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ABSTRACT: The performance of eight National Center for Environmental Prediction (NCEP2) reanalysis-driven regional
climate models (RCMs), seven from the North American Regional Climate Change Program (NARCCAP) and one from
the Coordinated Regional Downscaling Experiment (CORDEX), in simulating the 1980–2004 climate of western Canada
was assessed at a number of spatial and temporal scales. Results indicated that the RCMs were more successful at capturing
the seasonal spatial distribution of mean temperature than precipitation and that inaccuracies in the spatial distribution of the
summer climate moisture index were likely due to the errors in precipitation distribution and amount. All RCMs performed less
well in simulating summer precipitation, most likely due to continued problemswith the simulation of convective precipitation.
At the grid box scale, quantile–quantile (q–q) plots for temperature indicated that all RCMs showed very similar

distributions to observed but with warm or cold biases, and errors in the simulation of a number of temperature-based extremes
indices were related to these biases. For precipitation, q–q plots indicated that most RCMs overestimated precipitation totals,
and while tending to follow the observed quantiles at smaller precipitation amounts, they diverged at larger precipitation
totals. Performance in simulating the precipitation-based extremes indices depended largely on whether or not a RCM over-
or under-estimated precipitation totals – with those RCMs simulating too much precipitation underestimating the number of
consecutive dry days and dry day persistence, and vice versa.
Despite improvements in RCM resolution and parameterisation schemes, this work indicates that the simulation of

precipitation in particular is still problematic in western Canada. This implies that scenarios of climate change constructed
from RCM output require some form of bias correction to be of most use in impacts studies.
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1. Introduction

The major impacts of climate change on most sectors (e.g.
water resources, agriculture) will very likely be as a result
of shifts in climate variability, exhibited through changes
in the frequency and magnitude of extreme climatic events
(e.g. Colombo et al., 1999; Easterling et al., 2000; Hunt-
ingford et al., 2003; Allan and Soden, 2008; Gutowski
et al., 2010; IPCC, 2012; Murdock et al., 2013). Studies of
climate change impacts have predominantly used scenar-
ios describing changes in mean climate (e.g. IPCC, 2007;
IPCC, 2014a, 2014b; Lemmen et al., 2008; and many oth-
ers), although Katz and Brown (1992) and Semenov and
Porter (1995) recognized over 20 years ago that shifts in
climate variability have a greater effect on the frequency
of extreme climatic events than do changes in mean val-
ues. Until relatively recently the main tools available for
the construction of physically consistent climate change
scenarios were global climate models (GCMs). The spa-
tial scales at which these climate models operate (typically
200–300 km) are much coarser than those of the driving
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processes of many impacts (Giorgi et al., 2001) and this
has led to repeated calls for higher resolution climate infor-
mation to serve the impacts community (Mearns et al.,
2001, 2012). Although GCMs perform well in simulating
mean climate and the external forcing of global climate,
their coarse spatial resolution limits their capacity to sim-
ulate climate variability and extreme events (Kharin and
Zwiers, 2000; Huntingford et al., 2003; Zwiers and Zhang,
2003; Kharin et al., 2005; Schaeffer et al., 2005).
Regional climate models (RCMs), operating typically

at spatial scales of between 10 and 50 km, and utiliz-
ing reanalysis- or GCM-derived initial and lateral mete-
orological boundary conditions, are able to provide more
reliable information on climate variability and extremes
(e.g. Christensen and Christensen, 2003; Frei et al., 2003).
This improvement over lower resolution climate mod-
els (the ‘added value’; Flato et al., 2013) is due to the
RCMs’ better representation of finer-scale topographic
features, characteristics of the land surface, and tem-
poral detail, as well as the improved representation of
smaller-scale atmospheric processes. These factors gener-
ate, or modify, atmospheric circulation at scales vital for
the adequate simulation of local extremes (Mearns et al.,
2003). However, many of the shortcomings of RCMs (and
GCMs) still stem from the lack of explicit representation
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of small-scale processes, such as clouds and convection
(Randall et al., 2007). And, for climate extremes in par-
ticular, there are some processes, including feedbacks
and land–atmosphere and ocean–atmosphere interactions,
which are still poorly represented and understood (Senevi-
ratne et al., 2012).
Flato et al. (2013) indicated that the added value of

RCMs is mostly achieved through improved simulation of
extremes on small spatial and short temporal scales and
of topography-influenced phenomena. For example, Hunt-
ingford et al. (2003) showed that while coarse-resolution
simulations provided an acceptably realistic mean rain-
fall for a location, the high resolution of an RCM was
required for the realistic simulation of extreme rainfall.
Also, Rauscher et al. (2010) illustrated improvements in
the simulation of summer precipitation over Europe when
RCM resolution was increased to 25 km from 50 km.
Kanada et al. (2008), using a 5 km resolution climate
model for Japan, showed good agreement between the
simulation and observations for total daily precipitation
amount and frequency and the temporal and spatial char-
acteristics of maximum daily precipitation between June
and October. More recently, Kendon et al. (2012) demon-
strated that a convection-permitting very high resolution
(1.5 km) RCM simulated much more realistic rainfall over
the UK when compared to a 12 km resolution RCM, with
a much better representation of the duration and spatial
extent of heavy rain events. Persistent light rain, a common
problem in climate models, and errors in the diurnal cycle
were also considerably reduced in the 1.5 km resolution
RCM. This implies that for precipitation in particular, the
realistic representation of extremes is very much depen-
dent on RCM resolution.
Although the number of RCM experiments available

is far fewer than their global model counterparts, they
have been the focus of various international research
programmes, many of which have included an assessment
of RCM performance in simulating current climate. These
include the North American Regional Climate Change
Program (NARCCAP; Mearns et al., 2007 updated
2014, 2009, 2012), the Coordinated Regional Down-
scaling Experiment (CORDEX; Giorgi and Gutowski,
2015), Prediction of Regional Scenarios and Uncer-
tainties for Defining European Climate Change Risks
and Effects (PRUDENCE; Christensen et al., 2002)
and Ensemble-based Prediction of Climate Changes
and their Impacts (ENSEMBLES; van der Linden and
Mitchell, 2009).
This article describes the first step in the process of

developing RCM-derived scenarios of climate change
for western Canada. Many impacts studies in this region
require fine spatial- and temporal-scale climate data
and projections of future climate at the same scales.
In the first set of guidelines on RCM data use in
impacts studies, Mearns et al. (2003) recommended
the adoption of the delta method of scenario construction
(IPCC-TGICA, 2007), which is based on 30-year mean
values and combines climate model-derived changes with
an observed climate record, and has been widely used with

GCM output. In a more recent European study using RCM
data to drive a number of impacts models (ranging from
energy use to potential biomass productivity), Fronzek
and Carter (2007) also cautioned against using RCM data
directly due to biases in their representation of current
climate. Given the systematic biases within RCMs, it is
unlikely that their data will ever be sufficiently reliable to
be used directly, i.e. without any further statistical manip-
ulation, but bias correction methods (see Teutschbein and
Seibert (2012) for a review and evaluation of techniques)
may be applied which do not constrain the future climate
information to a particular pattern of climate variability, as
is the case with the delta method of scenario construction.
The aim of this article, therefore, is to determine how well
a number of RCMs perform in simulating current climate
in western Canada in order to facilitate the selection
of an appropriate bias correction method for the future
construction of scenarios of climate change.
Since both GCMs and RCMs are used for a broad

range of research studies, a set of measures for assessing
the important aspects of climate has not yet been identi-
fied (Gleckler et al., 2008). Instead, the combined use of
many techniques is recommended to provide a compre-
hensive picture of climate model performance (Flato et al.,
2013). This assessment of RCM performance, therefore,
examines various aspects of western Canadian climate at
seasonal, monthly and daily timescales. This study uses
output from reanalysis-driven RCM experiments which
allows year-to-year comparisons with observed data (e.g.
Roy et al., 2012). In some cases, RCM control runs (driven
with boundary conditions from a GCM) have been used
(e.g. Blenkinsop and Fowler, 2007; van Roosmalen et al.,
2010), but these can only compare distributions of climate
variables and not the synchronicity of the time series. Use
of reanalysis boundary conditions to drive a RCM means
that errors in the large-scale forcing fields are small and
that the observed inter-annual and seasonal variability is
incorporated into the RCM (Dulière et al., 2011). For these
reasons, reanalysis-driven RCMs are more likely to better
simulate observed climate although, given non-linearities
in the climate system and errors or parameterisations in
a RCM’s configuration, the simulated climate cannot ever
be expected to exactly match the observed climatology. As
current and future drought conditions are the driver of this
research, the simulation of precipitation is the focus of this
article.

2. Methodology

RCM performance in simulating current climate was
assessed at various spatial and temporal scales by compar-
ing RCM data with an observed climatology. For western
Canada, seasonal and annual mean temperature and pre-
cipitation were compared, while for ten sites (see Figure 1)
in southern Alberta (Carway, Gleichen, Lethbridge and
Medicine Hat) and southern Saskatchewan (Kindersley,
Leader, Outlook, Val Marie, Swift Current and Yellow
Grass) a number of indices based on daily precipitation
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Figure 1. Location of sites used for RCM performance analysis in western Canada (area outlined in white). C, Carway; G, Gleichen; L, Leader; LB,
Lethbridge; MH, Medicine Hat; O, Outlook; VM, Val Marie; SC, Swift Current; K, Kindersley; YG, Yellow Grass.

were calculated. These ten sites were chosen so as to
be close to two study watersheds, Swift Current Creek,
Saskatchewan, and the Oldman River, Alberta, which are
the focus of current climate scenario construction work
(Sauchyn et al., 2016).

2.1. Data

2.1.1. NCEP-DOE AMIP-II Reanalysis (R-2) data

The National Center for Environmental Prediction-
Department of Energy (NCEP-DOE) Atmospheric Model
Intercomparison Project-II (AMIP-II) reanalysis (R-2;
Kistler et al., 2001; Kanamitsu et al., 2002), henceforth
NCEP2, is an updated 6-h global analysis series from
1979 to present which fixes known processing errors in
the NCEP-NCAR reanalysis (R-1; Kalnay et al., 1996)
and includes an improved forecast model and data assimi-
lation system. This reanalysis is a retrospective record of
the atmosphere based on extensive observations, includ-
ing land surface, ship, rawinsonde and satellite data, and
is obtained by running a numerical weather prediction
model with these observations. This data set has been
used to provide boundary conditions (such as momentum,
humidity and wind speed) for the RCMs involved in the
NARCCAP (Mearns et al., 2007 updated 2014, 2012) and
also as a basic verification data set for the AMIP-II (AMIP
Project Office, 1996). Here, these gridded data (at approx-
imately 1.8∘ latitude/longitude resolution) were compared
with output from the NCEP2-reanalysis-driven RCMs to
determine the value added to their climate simulations.

2.1.2. RCM data

RCM data were obtained from the NARCCAP (Mearns
et al., 2007 updated 2014, 2012) and from the Canadian
Centre for Climate Modelling and Analysis (Environment
Canada) for the 1980–2004 time period. Details of the
seven different RCMs (totalling eight experiments) run for
the North American spatial domain at resolutions between
25 and 50 km are given in Table 1.

2.1.3. Observed climate data

2.1.3.1. Gridded observed data: The ANUSPLIN grid-
ded monthly climatology developed by the Canadian
Forest Service (McKenney et al., 2001, 2006) is an
elevation-dependent and spatially continuous data set with
a spatial resolution of 300 arc s (approximately 10 km). It
was constructed using ANUSPLIN software (Hutchinson,
1995, 2004) and observed data from the Meteorological
Service of Canada and the US National Climatic Data
Center. This monthly data set was shown to perform well
in a comparative study of four gridded climate normal
(1961–1990) data sets for Canada (Milewska et al.,
2005), with best agreement in the Prairies which are
characterized by relatively flat terrain and high station
density. Temperatures were shown to be within 1 ∘C and
precipitation within several percent of station values in
this region (Milewska et al., 2005). Seasonal and annual
fields were calculated for each year from the ANUSPLIN
monthly data set and then used for comparison with each
RCM at these time scales.

2.1.3.2. Observed station data: Daily observed sta-
tion data from Environment Canada’s second generation
adjusted daily precipitation data set (Mekis and Vincent,
2011) and the second generation homogenized temper-
ature data sets (Vincent et al., 2012) were used in this
analysis for the calculation of the extremes indices listed
in Table 2 at the ten sites previously mentioned and for the
calculation of skill scores (see Section 2.3). For the latter
analysis, 105 temperature stations and 127 precipitation
stations with daily data spanning the period 1980–2004
were available for western Canada.

2.2. Climate indices

2.2.1. Regional moisture deficit

Drought is a particular hazard in western Canada (e.g.
Sauchyn et al., 2005; Sauchyn and Kulshreshtha, 2008;
Wheaton et al., 2008; Sauchyn and Bonsal, 2013), so
it was important to consider an index which combines
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Table 1. Regional climate model details.

Model Modelling group Model identifier Grid size

CRCM v4.2.0 OURANOS/UQAM (Caya and LaPrise, 1999;
De Elía and Côté, 2010)

CRCM 115× 140 (50 km)

CanRCM4 Environment Canada/UQAM (Scinocca et al.,
2016)

NAM-44 NAM-22 NAM-44:
130× 155 (50 km)
NAM-22:
260× 310 (25 km)

ECPC/ECP2 UC San Diego/Scripps (Juang et al., 1997) ECP2 116× 147 (50 km)
HRM3 UK Hadley Centre for Climate Prediction and

Research (Jones et al., 2004)
HRM3 130× 155 (50 km)

MM5I Iowa State University (Grell et al., 1993) MM5I 99× 124 (50 km)
RCM3 UC Santa Cruz (Giorgi et al., 1993a, 1993b; Pal

et al., 2000, 2007)
RCM3 104× 134 (50 km)

WRFP/WRFG Pacific Northwest National Laboratory
(Skamarock et al., 2005)

WRFG 109× 134 (50 km)

Table 2. List of extremes indices calculated using observed and
RCM daily temperature and precipitation data.

Index Definition

pq90 The 90th percentile of rain day amounts
pxcdd Maximum number of consecutive dry

days (largest number of consecutive days
where daily precipitation ≤1mm)

pxcwd Maximum number of consecutive wet
days (largest number of consecutive days
where daily precipitation> 1mm)

ppww Mean wet-day persistence (total number
of consecutive wet days/total number of
wet days, for the specified period)

ppdd Mean dry-day persistence (total number
of consecutive dry days/total number of
dry days, for the specified period)

px3d Greatest 3-day rainfall total

the effects of both temperature and precipitation into a
meaningful measure of drought. Although there are a
number of drought indices (e.g. Heim, 2002; Keyantash
and Dracup, 2002), a simple moisture deficit index was
used here which had minimal data requirements.
Moisture deficit, in this case defined as a measure of

effective precipitation in excess of water loss by evapotran-
spiration (P-PET), was calculated for observed and RCM
data sets. Although there are a variety of methods available
to calculate potential evapotranspiration (PET; e.g. Priest-
ley and Taylor, 1972; Jensen et al., 1990; Thornthwaite,
1948; Shaw, 1994), Hogg’s (1994, 1997) climate moisture
index (CMI) was selected for its relative simplicity and
basic climate data requirements. PET, in this case, was cal-
culated using the simplified Penman–Monteith approach
(Hogg, 1997). Hogg (1997) gave meaning to this index
by illustrating that forest distribution in western Canada
appears to be controlled by moisture deficit. According to
Hogg (1997), a CMI value of zero (i.e. P=PET) defines
the southern boundary of the boreal forest and a value
of -15mm corresponds to the aspen parkland–grassland
boundary (based on 1951–1980 climate data). Moisture

deficit values were calculated for each month and then
accrued over the 3-month period May, June and July, to
provide a measure of effective precipitation during the
growing season (henceforth referred to as summer CMI).

2.2.2. Site-specific extremes indices

A list of standard indices related to extremes in daily tem-
perature and precipitation was put together by Frich et al.
(2002) and later extended by the CCI/CLIVAR/JCOMM
Expert Team on Climate Change Detection and Indices,
an international effort coordinated by WMO/WCRP.
These indices are used to monitor extremes in the present
climate (e.g. Vincent and Mekis, 2006) and also as
a result of climate change (e.g. Tebaldi et al., 2006).
Many of these indices were used in The Statistical and
Regional dynamical Downscaling of Extremes for Euro-
pean Regions (STARDEX, 2005) project and MATLAB®
scripts were written to calculate the indices of inter-
est, based on the original FORTRAN routines available
through STARDEX. Table 2 indicates which extremes
indices were calculated from the daily observed and RCM
data, the focus being on precipitation extremes.

2.3. Methods for comparing RCM and observed data

Since part of the focus of this RCM performance assess-
ment considers their ability to simulate the frequency and
intensity of extremes, this raises some unresolved issues
regarding grid box data. There is some debate about com-
paring data from single climate model grid boxes with
observed station data and about exactly how the grid box
data should be interpreted (Skelly and Henderson-Sellers,
1996). Does the data value represent the centre of the grid
box (e.g. Gutowski et al., 2007) or is it an average value for
the whole grid box (e.g. Osborn and Hulme, 1997)? Also,
the climate modelling community recommends that results
are averaged over multiple grid boxes since RCMs (and
GCMs for that matter) cannot be expected, for numerical
modelling reasons, to be skillful at their grid point scale
(von Storch et al., 1993; Frei et al., 2003). Spatial averag-
ing over several grid boxes smoothes out the errors at the
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grid point scale and potentially leads to better estimates
(Herrera et al., 2010; Dulière et al., 2011). Teutschbein
and Seibert (2010), however, found that the value of one
grid cell did not differ considerably from the average over
nine grid cells in their hydrological modelling study of
five catchments located in a number of different climate
zones across Sweden. In this case, our focus is on how
well the RCMs are able to simulate extremes and averaging
over several grid boxes may mask their ability to simulate
extreme values. Construction of gridded observed data sets
may also lead to the underestimation of extremes as a result
of averaging station data to obtain gridded values (Haylock
et al., 2008; Hofstra et al., 2010; Yin et al., 2014). Being
aware of these issues, it was decided, in this case, to use
station data for the calculation of the observed extremes
indices, rather than individual grid boxes from the daily
ANUSPLIN gridded observed data set. Data from the indi-
vidual RCM grid boxes closest to the station location were
extracted and the extremes indices listed in Table 2 cal-
culated. Although the RCM extreme values are likely to
be underestimated, comparison with observed station data
rather than gridded observed data allows us to determine
the magnitude of the error and also the ability of the RCMs
to simulate extremes on the scale of those observed.
The following comparisons were made:

1. Mean temperature and precipitation were averaged
over western Canada (49∘–60∘N, 95∘–120∘W) and the
1980–2004 average annual cycles compared for these
variables.

2. For each year, the spatial patterns of gridded seasonal
fields were compared using the standard Pearson’s
correlation coefficient, which represents the degree
of agreement between the RCM and NCEP2 climate
patterns and those observed. For NCEP2 and each
RCM, the original ANUSPLIN gridded observed data
set was scaled up to the same resolutions by averaging
the ANUSPLIN grid boxes falling within each NCEP2
or RCM grid box. As the correlation coefficient is
insensitive to biases, it focuses on the ability of RCMs
to simulate spatial details and contrasts (Walsh and
McGregor, 1997; Herrera et al., 2010). A measure of
the bias between RCM, NCEP2 and observed fields
was determined by calculating the mean absolute error
(MAE). We used MAE, rather than the root mean
square error (RMSE), a measure commonly used to
describe model performance (see, e.g. Mearns et al.,
2012), because MAE is an unambiguous measure of
average error (Willmott and Matsuura, 2005). RMSE,
on the other hand, becomes increasingly larger than
MAE as the distribution of error magnitudes becomes
more variable, meaning that its interpretation is not
clear.

3. In order to look beyond seasonal or longer aver-
ages, which can mask biases or systematic errors
that are identifiable in daily data, probability den-
sity functions (pdfs) were used to permit comparisons
of the entire data distribution (Perkins et al., 2007).
Observed and NCEP2 and RCM-derived precipitation

were compared using a simple measure of similarity
between two pdfs, known as the skill score (Perkins
et al., 2007). All observed daily station data with
complete, or almost complete, records for the period
1980–2004 were used to construct the observed pdf
for western Canada. In a similar manner, daily data
for each grid box within the region were used to
construct the RCM pdf for each RCM. Bin sizes of
1mmday−1 for precipitation were used and all daily
values of precipitation below 1mmday−1 were omit-
ted, since precipitation rates less than this do not con-
tribute substantially to total daily precipitation over
most regions (Dai, 2001; Sun et al., 2006). The skill
score, as described by Perkins et al. (2007), measures
the common area between two pdfs by calculating the
minimum value of the two distributions in each bin
and then summing across the entire distribution. Values
range between zero (poor performance – negligible
overlap between pdfs) and one (pdfs match).

4. Daily observed station data and NCEP2 and RCM data
were compared using quantile–quantile (q–q) plots at
the ten study sites illustrated in Figure 1. This method
compares the pdfs of two sets of data and is often used
to compare empirical data with that of a known, or
fitted, distribution (e.g. Gaussian or Gamma; Wilks,
2011). In this case, the plotted quantiles represent the
distribution of the RCMs and NCEP2 versus observed
data. If the points on the q–q plot closely follow the
1 : 1 line (i.e. y= x, and here the line upon which the
observed data are plotted) then the data sets are con-
sidered to be from the same probability distribution.
For precipitation, only days on which precipitation
occurred were considered, with the threshold value
defining a wet day being 1mm.

5. The extremes indices listed in Table 2 were calculated
at the ten study sites and compared.

3. Results

3.1. Annual cycles

All RCMs and NCEP2 capture the shape of the mean
temperature and precipitation annual cycles for western
Canada (Figure 2). Almost all RCMs simulate conditions
that are too warm in the winter half year but in summer
approximately half the RCMs are cooler than, or more
closely match, observed values. HRM3 exhibits the largest
warm bias, with mean temperature almost 10 ∘C greater
than observed over western Canada in winter. CRCM has
a cold bias of about 2 ∘C throughout most of the year in
this region. NCEP2 closely matches observed conditions
for the latter half of the year, but is about 1 ∘C cooler than
observed in spring and early summer. Although all RCMs
and NCEP2 capture the shape of the annual precipitation
cycle in this region, the majority of RCMs are too wet
throughout the cycle, particularly in winter and peak pre-
cipitation tends to occur a month earlier than observed in
almost all RCMs. FromOctober toMay all RCMs simulate
too much precipitation, about 20mm (per month) greater
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Figure 2. Average annual cycle of mean temperature (∘C) and total precipitation (mm) for western Canada for 1980–2004. ANUSPLIN observed,
bold black line; NCEP2, black dashed line. RCMs discussed in text are identified by the following symbols: CRCM – ; ECP2 – ; HRM3 – ;

MM5I – ; WRFG – . Other RCMs are indicated by the grey lines.

than observed values. NCEP2 closely matches observed
average precipitation totals in winter, but greatly overes-
timates totals in summer, in particular, with values being
almost double those observed. All RCMs exhibit improve-
ments in the simulation of summer precipitation when
compared with NCEP2. As RCM and NCEP2 orography
is subdued and smoother than in reality, the rain-shadow
effect of the Rockies is not as pronounced, thus con-
tributing to the overestimation of precipitation in western
Canada. From July to September half the RCMs (HRM3,
WRFG, MM5I and ECP2) simulate too little precipitation
in this region.

3.2. Comparison of spatial fields

3.2.1. Spatial pattern – Pearson correlation coefficients

Pearson correlation coefficients for mean temperature,
precipitation and summer CMI are shown in Figures 3–5,
by year and RCM, for western Canada. These figures
allow the identification of those RCMs which may have
particular problems in simulating the spatial patterns of
the climate variables under study, or of particular years
when all RCMs perform well or have difficulty simulating
observed conditions. In general, RCMs are more success-
ful at capturing the spatial pattern of mean temperature
(Figures 3 and S1, Supporting information), compared to
precipitation (Figures 4 and S2) and CMI (Figure 5), with
coefficients for this variable mostly in excess of 0.9. Cor-
relations are generally slightly lower for spring mean tem-
perature (Figure S1) than in the other seasons, with CRCM,
HRM3 and WRFG indicating lower values overall, while
in summer ECP2, HRM3 and WRFG are not as successful

at simulating the spatial patterns of mean temperature
as the other RCMs. All RCMs are less correlated than
NCEP2 with the observed climatology in spring and sum-
mer, and while values are slightly lower than NCEP2 in fall
(Figure S1) and winter, most correlations are still greater
than 0.9.
For precipitation over western Canada (Figures 4 and

S2), the RCMs are most successful at simulating the spa-
tial pattern of winter precipitation, with correlations gen-
erally in excess of 0.7 in all years. In summer, however,
coefficients are generally less than 0.5 in all years, with
some RCMs exhibiting values close to, or below, zero, in
many years. In spring and fall (Figure S2), correlations are
mixed, but all RCMs are generally less successful at simu-
lating precipitation patterns in these seasons compared to
winter, although more successful than in summer. In all
seasons except summer, all RCMs are more closely cor-
related with observed conditions than is NCEP2, implying
that their higher resolution has resulted in improvements to
the simulation of precipitation in these seasons. For sum-
mer CMI (Figure 5), RCM3 results are least well correlated
with observed conditions (1980–2004 mean correlation is
0.4), while CRCM and the two versions of CanRCM4 are
more successful, with period mean correlations closer to
0.6. All RCMs, with the exception of MM5I and RCM3,
are more successful than NCEP2 in simulating observed
summer CMI values.
For precipitation, lower summer correlation coefficients

are likely due to problems modelling convective precipi-
tation, which is the primary source of precipitation in this
region at this time of year, either through inadequate model
physics or by the spatial domain not being large enough to
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Figure 3. Spatial pattern correlations by RCM and year for mean temper-
ature over western Canada (49∘ –60∘N, 95∘–120∘W). The 1980–2004
mean value is given at the top of each plot. (Value for RCM3 2004 is
missing.) [Colour figure can be viewed at wileyonlinelibrary.com].

include transport of moisture from further afield (e.g. the
Gulf of Mexico). At the spatial resolutions of the RCMs
considered here (25–50 km), convective storms are not
directly modelled, andmesoscale systems producingmuch
of the warm-season precipitation in this region are poorly
resolved (Mearns et al., 2012). Convection is still mod-
elled using sub-grid scale parameterisations, which leads
to noisy patterns as the individual model grid boxes are, in
effect, independent of one another. Also, gridded observed
summer precipitation data sets are unrealistically smooth
because of the interpolation of noisy station data and these
two factors together lead to the poor correlations observed.
For mean temperature, the lower correlation coefficients
apparent in spring will be due to the temperature bias of
the RCMs which results in either the early loss or late melt
of snow cover.

3.2.2. Mean absolute error

Figures 6–8 illustrate theMAE between observed, NCEP2
and RCM-simulated values by year, model and season
(winter and summer) for western Canada for mean tem-
perature, precipitation and summer CMI, respectively.
For mean temperature (Figures 6 and S3), errors are
generally smaller in the summer and fall (Figure S3).
HRM3 consistently exhibits the largest errors, particu-
larly in winter (Figure 6), when the 1980–2004 mean
value is between 8 and 9 ∘C warmer than observed. With
the exception of HRM3, MAE is generally within 2 and

Figure 4. Spatial pattern correlations by RCM and year for total precip-
itation over western Canada (49∘ –60∘N, 95∘ –120∘W). The 1980–2004
mean value is given at the top of each plot. [Colour figure can be viewed

at wileyonlinelibrary.com].

Figure 5. Spatial pattern correlations by RCM and year for summer CMI
for western Canada (49∘–60∘N, 95∘–120∘W). The 1980–2004 mean
value is given at the top of the plot. (Values for CRCM 2004 and HRM3
1980 are missing.) [Colour figure can be viewed at wileyonlinelibrary

.com].

3 ∘C of NCEP2 values for all RCMs. For total precip-
itation (Figures 7 and S4), errors are generally similar
to NCEP2 (within 0.5mmday−1) in winter (Figure 7),
spring and fall (Figure S4), while in summer (Figure 7)
all RCMs exhibit smaller MAE values than NCEP2. For
summer CMI (Figure 8), results are mixed, but CRCM and
ECP2 exhibit the smallest MAE values, unlike RCM3 and
NCEP2 which indicate generally larger MAE values than
the other RCMs.
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Figure 6. Winter and summer mean absolute error by RCM and year for
mean temperature (∘C) over western Canada (49∘ –60∘N, 95∘ –120∘W).
The 1980–2004mean value is given at the top of each plot. [Colour figure

can be viewed at wileyonlinelibrary.com].

3.2.3. Spatial patterns associated with high and low

correlations

Since all RCMs capture the general spatial pattern of
mean temperature and there is little difference between
the correlation coefficients in higher and lower scoring
years, and since the emphasis of this article is on precip-
itation simulation, no spatial patterns are illustrated for
mean temperature.
For precipitation, however, the RCMs are not so suc-

cessful at simulating its spatial distribution and there are
more pronounced differences between seasons. Figures S5
and 9 illustrate the spatial distribution of precipitation for
winter 1999 (higher correlation) and summer 1999 (lower
correlation), respectively. For winter 1999 (Figure S5),
where correlations are generally in excess of 0.8 (HRM3
is the exception at 0.77), all RCMs exhibit similar pat-
terns and all overestimate the amount of precipitation in
the mountains on the British Columbia – south-western
Alberta border. This overestimation may be partly due to
the gridded ANUSPLIN data set which exhibits its largest
errors in mountainous regions (McKenney et al., 2006).
MAE values range between 0.2mmday−1 for NCEP2 and
0.78mmday−1 for ECP2. For summer 1999 (Figure 9), on
the other hand, spatial correlation coefficients are less than
0.5 and negative in some instances. MAE values range
between 0.46mmday−1 (CRCM) and 1.56mmday−1

(NCEP2). Convective precipitation contributes more to

Figure 7. Winter and summer mean absolute error by RCM and year
for total precipitation (mmday−1) over western Canada (49∘–60∘N,
95∘–120∘W). The 1980–2004 mean value is given at the top of each

plot. [Colour figure can be viewed at wileyonlinelibrary.com].

Figure 8. Mean absolute error by RCM and year for summer CMI for
western Canada (49∘–60∘N, 95∘ –120∘W). The 1980–2004 mean value
is given at the top of the plot. (Values for CRCM 2004 and HRM3 1980
are missing.) [Colour figure can be viewed at wileyonlinelibrary.com].

precipitation totals during summer months, and lower
correlation coefficients generally indicate the RCMs’
difficulty in simulating this type of precipitation and
the mesoscale systems producing precipitation in this
season.
For summer CMI, two particular years stand out in

Figure 5 as being consistently well-correlated (1988)
and poorly correlated (1999) with observed conditions
in western Canada. These years are shown in Figures S6

© 2017 Royal Meteorological Society Int. J. Climatol. (2017)
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Figure 9. Total precipitation (mmday−1) for summer (JJA) 1999: observed (ANUSPLIN), NCEP2, and as simulated by the eight RCMs. Correlation
coefficients (r) and mean absolute errors (MAE; mmday−1) are given for western Canada. [Colour figure can be viewed at wileyonlinelibrary.com].

and 10, respectively. Across the Canadian prairies, 1988
was a drought year and all RCMs and NCEP2 simulate
the pattern of moisture deficit across this region with
some success (Figure S6). NCEP2, CRCM and the two
resolution versions of CanRCM4 (NAM-44 and NAM-22)
are most successful at capturing the spatial CMI pattern.
On the other hand, 1999 was the first year in a multi-year

drought across the Canadian prairies (1999–2004; e.g.
Chipanshi et al., 2006; Bonsal et al., 2013), but observed
conditions were not extreme, with most moisture deficit
values generally within the range ±100mm. In this case,
all RCMs struggled to simulate this pattern of moisture
deficit (Figure 10), with correlations generally below 0.3.
This implies that CMI is more successfully simulated
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Figure 10. CMI (mm) for summer 1999: observed (ANUSPLIN), NCEP2, and as simulated by the eight RCMs. Correlation coefficients (r) and mean
absolute errors (MAE; mm) are given for western Canada. [Colour figure can be viewed at wileyonlinelibrary.com].

when summer precipitation is low and less convective
activity occurs.

3.3. Simulation of extremes

RCM performance in simulating extremes was evaluated
at two spatial scales:

1. At the regional scale: skill scores (Perkins et al., 2007)
were calculated to determine the RCMs’ ability to
capture the observed probability density functions for

daily mean temperature and precipitation on a seasonal
basis across western Canada;

2. At the grid box scale: q–q plots were used to compare
the observed and RCM daily data distributions for the
extremes indices listed in Table 2 at the ten locations
in western Canada (see Figure 1).

3.3.1. Skill scores

Tables 3 and 4 list the skill scores for daily mean tem-
perature and precipitation by season, respectively. CRCM
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Table 3. Skill scores for mean temperature over western Canada.

Model/Season DJF MAM JJA SON

NCEP2 0.85 0.68 0.83 0.86
CRCM 0.78 0.72 0.69 0.77
NAM-44 0.92 0.88 0.87 0.89
NAM-22 0.90 0.88 0.88 0.88
ECP2 0.90 0.85 0.91 0.91
HRM3 0.81 0.94 0.75 0.91
MM5I 0.90 0.73 0.80 0.84
RCM3 0.91 0.77 0.77 0.85
WRFG 0.86 0.95 0.87 0.85

DJF, winter; MAM, spring; JJA, summer; SON, fall.

Table 4. Skill scores for precipitation over western Canada.

Model/Season DJF MAM JJA SON

NCEP2 0.85 0.93 0.93 0.95
CRCM 0.86 0.83 0.87 0.84
NAM-44 0.94 0.95 0.88 0.94
NAM-22 0.94 0.97 0.90 0.96
ECP2 0.93 0.97 0.96 0.95
HRM3 0.98 0.96 0.82 0.95
MM5I 0.95 0.92 0.95 0.94
RCM3 0.91 0.91 0.95 0.90
WRFG 0.97 0.94 0.84 0.95

DJF, winter; MAM, spring; JJA, summer; SON, fall.

tends to perform less well than the other RCMs for temper-
ature, but skill score values are generally still greater than
0.7. Most RCMs tend to indicate slightly less skill in sim-
ulating the observed mean temperature pdf in summer and
this is also the case for some RCMs (NAM-44, NAM-22,
HRM3 andWRFG) for precipitation. NCEP2, on the other
hand, shows less skill in simulating the spring temperature
distribution and winter and spring precipitation distribu-
tions. The skill score histograms (not shown) indicate that
the RCMs capture the general shape of the pdfs but, for
the lower skill scores, the pdfs tend to err in location and
frequency when compared to observed.

3.3.2. Quantile–quantile plots

Quantile–quantile plots for daily mean temperature and
total precipitation tend to be very similar across all ten
sites, and so only a couple of examples are included here
as indicative of the general results. Figure 11 illustrates
seasonal q–q plots for mean temperature for Lethbridge,
Alberta. For ease of interpretation, the observed daily
data are represented by the y= x line. In all seasons,
almost all RCMs, with the exception of CRCM and RCM3
and also NCEP2, are warmer than observed. In winter,
spring and fall, the RCM quantiles more closely match
observed when mean temperature is positive. In summer,
at mean temperatures greater than about 20 ∘C all RCMs
and NCEP2 exhibit warmer temperatures than observed,
indicating that extreme mean temperatures at this site are
too high in this season.
Figure 12 shows the q–q plot for total precipitation at

Swift Current, Saskatchewan. In winter, all RCMs (except

NAM-22) underestimate the observed quantiles, while
in the other seasons both under- and over-estimations
are apparent, although no particular RCM consistently
exhibits the same behaviour across all seasons. NCEP2,
however, does underestimate the observed precipitation
quantiles in all seasons at this site. While the RCMs and
NCEP2 tend to follow the observed quantiles, discrepan-
cies become larger at higher precipitation values.

3.3.3. Extremes indices

Table 2 lists the precipitation-based extremes indices cal-
culated for observed, NCEP2 and RCM data at the ten
study sites. In order to concisely present the results, mean
square errors (MSE) between observed and model index
values were calculated and results are given for Val Marie,
Saskatchewan. This site exhibited the least error for three
of the five indices considered here, while Carway, Alberta,
consistently displayed the highest error values.
Although temperature-based extremes indices were cal-

culated initially, the results are not shown because they
are completely consistent with the warm and cold biases
identified in the RCMs at the seasonal time scale. For
example, extreme minimum and maximum temperatures
are too warm, the growing season is too long and the
number of growing degree days is overestimated in those
RCMs with a warm bias (e.g. HRM3 and ECP2) and vice
versa.

3.3.3.1. Ninetieth percentile rain day amounts:

Figure 13 illustrates deviations from the observed value
for 90th percentile rain day amounts. Total deviations are
smaller in winter, when precipitation is low, and larger
in spring and summer. Again, no single RCM or NCEP2
exhibits consistently positive or negative deviations. In
summer, negative deviations occur more frequently and
the positive deviations tend to be dominated by one or
two RCMs, e.g. RCM3 and WRFG in 2003. Where this
index value is underestimated (i.e. deviations are negative)
it implies that the RCM is unable to simulate the larger
precipitation amounts in the distribution. As negative
deviations are generally larger and more frequent in sum-
mer, they are probably related to the poor simulation of
convective precipitation in this season.

3.3.3.2. Maximum number of consecutive wet and dry

days: Figure 14 shows deviations from the observed value
for the maximum number of consecutive dry days. For this
index, there is more consistency in the results: for example,
in summer ECP2 generally overestimates the number of
consecutive dry days, while NAM-44 and NAM-22 under-
estimate this index value. Figure 15, which gives the max-
imum number of consecutive wet days, indicates that most
RCMs overestimate the number of consecutive wet days,
particularly in spring and summer. Wet and dry day per-
sistence emulates these results (not shown), with those
RCMs which overestimate the maximum number of con-
secutive wet or dry days also overestimating wet or dry day
persistence, respectively, and vice versa. So, while most
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Figure 11. Quantile–quantile plots for daily mean temperature (∘C) for Lethbridge, Alberta. The 1:1 line represents the observed daily data. RCMs
are represented by the following symbols: CRCM – ; NAM-22 – +; NAM-44 – ; ECP2 – ; HRM3 – ;MM5I – ; RCM3 – x;WRFG – ;

NCEP2 – •. [Colour figure can be viewed at wileyonlinelibrary.com].
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Figure 12. Quantile–quantile plots for daily precipitation (mm) for Swift Current, Saskatchewan. The 1:1 line represents the observed daily data.
RCMs are represented by the following symbols: CRCM – ; NAM-22 – +; NAM-44 – ; ECP2 – ; HRM3 – ; MM5I – ; RCM3 – x;

WRFG – ; NCEP2 – •. [Colour figure can be viewed at wileyonlinelibrary.com].
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Figure 13. The 90th percentile rain day amounts (mm) for Val Marie, Saskatchewan by RCM and year for 1980–2004; deviations from the observed
value. Values are missing for NCEP2 1984, all 1980 and 2002 (winter), HRM3 1980 and all 1998 (spring), HRM3 1980 and all 1982 (summer),

HRM3 1980, RCM3 2004 and all 1990, 1992 and 1996 (fall). [Colour figure can be viewed at wileyonlinelibrary.com].

RCMs and NCEP2 overestimate the maximum number of
consecutive wet days in spring and summer at this site,
they are not able to simulate the larger precipitation val-
ues observed in these seasons (and indicated by the 90th

percentile rain day amounts), thus implying that smaller
precipitation amounts are occurring more frequently in the
RCMs than is observed.

3.3.3.3. Greatest 3-day total precipitation: Figure 16
shows the deviations from observed values for 3-day pre-
cipitation totals. In winter deviations are smaller than in
the other seasons. Largest deviations are apparent in spring
and summer when much of the precipitation will be as a
result of convective events. Those RCMs which overes-
timate this multi-day precipitation total are generally the
same RCMs which overestimate the number of consecu-
tive wet days and wet-day persistence.

4. Summary and conclusions

This article has described the analyses undertaken to
assess the performance of eight RCMs (CRCM, NAM-44,
NAM-22, ECP2, HRM3, MM5I, RCM3 and WRFG) in

simulating the current climate of western Canada. The
climate of the driving reanalysis, NCEP2, was also com-
pared in order to determine the value added by the higher
resolution climate models. The analyses were selected to
gain a comprehensive picture of the RCMs’ ability to sim-
ulate various aspects of current climate. As well as exam-
ining RCMperformance at capturing the spatial features of
current climate at the seasonal scale, their ability to sim-
ulate daily extremes of temperature and precipitation was
also investigated. Results are summarized as follows:

1. RCM data generally exceed the observed mean
monthly temperatures over western Canada, with the
warm bias being greatest in January and December.
In the summer months, at least two RCMs exhibit
a cold bias and CRCM is cooler than observed
throughout the year. NCEP2, provider of boundary
conditions to the RCMs, is generally slightly cooler
than observed, particularly in spring.

2. All RCMs capture the general shape of the annual
precipitation cycle although peak values generally
occur about 1 month earlier than observed. Total
precipitation is overestimated in winter and early
spring, but from June to October the RCMs are split
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Figure 14. Maximum number of consecutive dry days for Val Marie, Saskatchewan by RCM and year for 1980–2004; deviations from the observed
value. Values are missing for all 1980 and 2002 (winter), HRM3 1980 and all 1998 (spring), HRM3 1980 and all 1982 (summer), HRM3 1980,

RCM3 2004 and all 1990, 1992 and 1996 (fall). [Colour figure can be viewed at wileyonlinelibrary.com].

with half simulating too much precipitation and half
too little. NCEP2 precipitation totals most closely
match observed values in winter, but are greatly
overestimated in summer. RCM values more closely
match observed in summer than do the NCEP2 data.

3. Pattern correlations indicate that all eight RCMs cap-
ture the spatial features of observedmean temperature
well in all seasons, although coefficients are slightly
lower in summer.

4. For total precipitation, spatial correlations are highest
in winter and lowest in summer. Summer correlations
range from approximately −0.3 to +0.7 and although
HRM3 and MM5I exhibit the lowest 1980–2004
mean values, all RCM results include years with low
correlations. Although the driving reanalysis fields
are providing relatively accurate large-scale informa-
tion to the RCMs, the models’ ability to simulate the
convective precipitation processes is still problematic
at 50 km resolution.

5. MAE values for mean temperature for western
Canada generally lie between 1.0 and 4.0 ∘C. The
exception to this is HRM3 which has the largest
errors in all seasons: winter temperatures are more
than 8 ∘C warmer than observed. Errors in winter
for this RCM are almost double those in the other

seasons. Mearns et al. (2012) reported that HRM3’s
poor performance, in terms of seasonal tempera-
ture bias (for North America as a whole, not only
Canada), does not occur elsewhere (e.g. China,
South America) or to the same extent over North
America when driven with the European Centre
for Medium-Range Weather Forecasting Reanalysis
(ERA-15). This implies that the two reanalyses are
different and Mearns et al. (2012) suggested that the
NCEP2 reanalysis data feeding into the RCM bound-
aries are indeed warmer and moister than ERA-15.
As well as the direct increase in temperature in
the boundary conditions, surface feedbacks within
the RCM, such as reduced snow cover leading to
enhanced absorption of solar radiation at the surface
and thus further increases in surface temperature,
may also be affected.

6. For precipitation, MAE values are larger in summer
and generally smaller in winter, when precipitation
amounts are generally low in this region. CRCM
exhibits the lowest error in all seasons while NCEP2
exhibits the largest MAE values in summer.

7. Spatial correlation coefficients for summer CMI, the
chosen moisture deficit index which combines the
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Figure 15. Maximum number of consecutive wet days for Val Marie, Saskatchewan by RCM and year for 1980–2004; deviations from the observed
value. Values are missing for all 1980 and 2002 (winter), HRM3 1980 and all 1998 (spring), HRM3 1980 and all 1982 (summer), HRM3 1980,

RCM3 2004 and all 1990, 1992 and 1996 (fall). [Colour figure can be viewed at wileyonlinelibrary.com].

effects of both temperature and precipitation, gen-
erally average about 0.5, although CRCM, NAM-44
and NAM-22 values are closer to 0.6. The RCMs are
able to simulate the spatial features of this index with
less success than for mean temperature, thus implying
that errors in the precipitation fields have more influ-
ence on the spatial distribution of CMI than does
mean temperature.

8. Skill scores were used at the regional scale to exam-
ine the ability of the RCMs to simulate the probability
density functions of daily temperature and precipita-
tion by season. CRCMgenerally scored slightly lower
than the other RCMs for all variables under consid-
eration in all seasons, but values still tended to be
greater than 0.7. This indicated that all RCMs gen-
erally capture the shape of the density functions well,
but where skill score values were lower there were
errors in the location and frequency of the distribu-
tions when compared with observed.

9. Examination of q–q plots for the ten selected sites
indicated that all RCMs simulated similar tempera-
ture distributions to those observed, but either with a
cold (CRCM, RCM3 and NCEP2) or a warm bias.

10. For precipitation, the q–q plots indicate that the
RCMs are not as successful at simulating distribu-
tions similar to those observed. At lower daily pre-
cipitation values the simulated distributions generally
follow that of the observed distribution, but at higher
values they tend to diverge.

11. Errors in the temperature-based extremes indices
tend to be as a result of the warm or cold bias
associated with a particular RCM. For example,
HRM3 consistently simulates conditions that are
warmer than observed, with fewer frost days, a larger
number of growing degree days and a longer grow-
ing season. CRCM, on the other hand, simulatesmean
temperature conditions that are generally cooler than
observed in the southern prairies, with a larger num-
ber of frost days, fewer growing degree days and a
shorter growing season length.

12. Precipitation-based extremes indices present more
complicated results. How well the RCMs perform in
simulating these types of indices is very RCM- and
site-dependent. In general, however, all RCMs tend
to give results that more closelymatch observed index
values in winter and fall. RCMs are able to simulate
large precipitation amounts (e.g. multi-day totals)
but most RCMs underestimate dry-day persistence
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Figure 16. Greatest 3-day total precipitation (mm) for Val Marie, Saskatchewan by RCM and year for 1980–2004; deviations from the observed
value. Values are missing for all 1980 and 2002 (winter), HRM3 1980 and all 1998 (spring), HRM3 1980 and all 1982 (summer), HRM3 1980,

RCM3 2004 and all 1990, 1992 and 1996 (fall). [Colour figure can be viewed at wileyonlinelibrary.com].

and the number of consecutive dry days. A 1mm
threshold was used as the boundary between dry and
wet days and this threshold may need adjusting for
some RCMs.

The above results have determined the performance of
RCMs over western Canada and paved the way for the
construction of higher resolution scenarios of climate
change. This work has confirmed that RCMs are able to
simulate the range of observed conditions for mean tem-
perature and, to a lesser extent, precipitation, including
the representation of extremes. For this area of western
Canada, the main error in NCEP2 appears to be in summer
precipitation, and all RCMs improve upon the NCEP2 val-
ues. Biases apparent in the RCM simulations at the annual
and seasonal scale are consistent with the errors in the sim-
ulated extremes at the daily timescale. It may be possible
to improve these simulations by imposing bias corrections,
which can then be applied to output from RCM future
climate experiments to construct climate change scenar-
ios. A simple linear scaling bias correction approach (e.g.
Lenderink et al., 2007) may be sufficient for mean tem-
perature, as the q–q plots indicate that most of the RCM
distributions appear to be similar to observed, but simply
shifted to either warmer or cooler conditions. However, for

precipitation, a more complex approach, such as distribu-
tion mapping (e.g. Teutschbein and Seibert, 2012), may be
probably required.
The disadvantage of all bias correction methods is that

they have to make the assumption of stationarity to apply
the associated correction factors to data from RCM future
climate change experiments. The correction methods also
simply statisticallymanipulate the rawRCMdata, i.e. none
of the approaches take the physical causes of the temper-
ature and precipitation biases into account (e.g. errors in
the large-scale forcing or errors in the parameterisation of
cloud processes and precipitation). Dulière et al. (2011)
and also Kendon et al. (2012) have shown that finer grid
spacing, which in the latter case allowed the inclusion of a
convection routine, significantly improved an RCM’s rep-
resentation of precipitation extremes. This implies that the
representation of extremes, particularly for precipitation,
will only really be improved by even higher resolution
modelling and subsequent improved model physics. In this
work, precipitation extremes did not appear to be simu-
lated more successfully with the higher resolution version
of CanRCM4 (NAM-22). As the same physics package is
used in both resolution versions of CanRCM4, it would be
surprising to see large differences between NAM-22 and
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NAM-44. Most of the additional value in higher resolu-
tion RCM runs comes from the higher resolution of land
surface features, in particular topography and lakes. Since
CanRCM4 does not have an elaborate approach to mod-
elling lakes and there is little topographic forcing in the
western Canada study region, seeing no significant differ-
ences between the NAM-44 and NAM-22 runs is reason-
able (J. Scinocca, pers. comm. 2016).
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