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This paper has examined the relative significance of uncertainty in future climate

projections from a subset of the coupled model intercomparison project phase 5

(CMIP5) global climate models for the Prairie Provinces of western Canada. This

was undertaken by determining: (a) the contribution of model and scenario uncer-

tainty and natural variability to the total variance of these future projections, and

(b) the timing of climate signal emergence from the background noise of natural cli-

mate variability. We examined future projections of mean temperature, precipitation

and summer climate moisture index (CMI). In this region, natural climate variability

plays an important role in future uncertainty until the end of this century, particularly

for precipitation and to a lesser extent, summer CMI. Model uncertainty also contrib-

utes to total uncertainty for these variables throughout this century, while scenario

uncertainty becomes more important towards the end of the century. For the region

as a whole, significant climate change (i.e., signal/noise >2) occurs earliest for sum-

mer mean temperature, with median time of emergence around 2035 for the RCP8.5

radiative forcing scenario. Although the median precipitation signal emerges from

the noise (i.e., signal/noise >1) around the 2070s in winter and the 2080s in spring,

significant values do not occur in any season for this variable before 2100. For sum-

mer CMI, the median time of emergence for significant change is around 2085. At

the grid scale, signal-to-noise ratios are significant for all seasons for mean surface

air temperature, with earliest times of emergence occurring in summer. In contrast,

the summer precipitation signal is not significant this century; for summer CMI, sig-

nificant values are obtained in the eastern half of the region, occurring from about

2065 onwards. Median times of emergence are towards the end of the century for

summer CMI in western Saskatchewan and in Alberta, although some areas of

Alberta do not exhibit significant signals this century.
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1 | INTRODUCTION

Numerical climate models are “the primary tools available
for investigating the response of the climate system to vari-
ous forcings, for making climate predictions on seasonal to

decadal time scales and for making projections of future cli-
mate over the coming century and beyond” (Flato et al.,
2013). Applied properly, the climate change scenarios
derived from these models are the most rigorous scientific
basis for climate change impact assessment and the proactive

Received: 8 February 2018 Revised: 9 March 2019 Accepted: 15 March 2019

DOI: 10.1002/joc.6079

Int J Climatol. 2019;1–14. wileyonlinelibrary.com/journal/joc © 2019 Royal Meteorological Society 1

https://orcid.org/0000-0003-3087-7172
mailto:elaine.barrow@sasktel.net
http://wileyonlinelibrary.com/journal/joc


adaptation of policy, practices and engineering design.
Unlike logical prediction, used to test the truth of theories or
the temporal prediction of near-term events such as weather,
projections of future climate cannot be verified (Oreskes,
2000). Therefore applying climate change scenarios to cli-
mate risk assessment and adaptation planning requires both
an ensemble of plausible model projections and measures of
uncertainty, or as Oreskes (2000) suggested, “If the value of
predictions is primarily political or social rather than episte-
mic, then we may need to be excruciatingly explicit about
the uncertainties in the theory or model that produced them
… .” The planners, engineers and policy makers responsible
for adaptation planning often ask the obvious questions,
“how likely are these projections?” and “when can we
expect to notice climate change?.” In this paper we attempt
to address the latter query in particular by examining the
uncertainty in climate projections, as well as the time of
emergence (ToE) of climate change signals.

Analyses of model biases relative to historical observa-
tions and reanalysis data are relatively common, (see,
e.g., Chapter 9 of the IPCC Fifth Assessment Report [IPCC
AR5; Flato et al., 2013] and a recent paper on the capacity
of regional climate models to simulate the climate of western
Canada [Barrow and Sauchyn, 2017]). Less common is
research which partitions the variance among model projec-
tions between signal, the simulated response to greenhouse
gas forcing, and noise, the natural internal variability. Here,
we examine the role of natural internal variability in (a) the
time of emergence of noticeable climate change, and (b) the
partitioning of model variance over time. The three main
sources of uncertainty contained in projections of future cli-
mate from global and regional climate models (GCMs and
RCMs) can be separated as follows (Hawkins and Sutton,
2009, 2011):

1. Model uncertainty: each model projects different future
climate changes in response to the same radiative forc-
ing. This results from incomplete knowledge con-
straining the climate model representation of physical
and dynamical processes.

2. Scenario uncertainty: different assumptions about future
emissions of greenhouse gases (GHGs), and thus future
radiative forcing, result in uncertainty in the projection
of future climate. This arises from a lack of knowledge
of future GHG emission trajectories, involving
unpredictable feedbacks between climatic and socio-
economic factors.

3. Natural internal variability: these are the largely chaotic
and unpredictable natural fluctuations in climate which
arise in the absence of any radiative forcing and which
are superimposed on the long-term trends in each projec-
tion of future climate; these fluctuations may mask,

particularly in the near-term or enhance the signal of
anthropogenic climate change. It is evident when several
runs of a single climate model, with very similar external
forcing and initial conditions, yield different results.

The IPCC AR5 (IPCC, 2013) included a discussion of
these sources of uncertainty in climate model projections,
representing them graphically as a “plume” and as a plot of
the fractions of the total variance by lead time, climate vari-
able and global versus regional scale (see Figure 11.8 in Kir-
tman et al., 2013). The plume depicts internal variability as
constant through time, while the scenario and model uncer-
tainties are shown as increasing. In the time series plots
spanning the 21st century, global projections of climate
change are dominated by model and scenario uncertainty,
although internal variability is a significant source of uncer-
tainty in the near term. This IPCC AR5 discussion of uncer-
tainty is based primarily on the work of Hawkins and Sutton
(2009, 2011) who emphasized that relative uncertainty can
be very different at regional spatial scales. In their analysis
of European winter climate, internal variability is relatively
more important and for precipitation, scenario uncertainty is
almost irrelevant.

The objective of this paper is to quantify the uncertainty
in global climate model projections for Canada's western
interior, documenting the relative amounts of model, sce-
nario and internal variability uncertainty and the timing of
the emergence of climate change signals. Our focus is on
surface air temperature, precipitation and the climate mois-
ture index (CMI; Hogg, 1994, 1997) in the three Prairie
Provinces of Manitoba, Saskatchewan and Alberta. The
hydroclimates of the northern Great Plains are among the
most variable on Earth, with large temperature seasonality
and inter-annual variability, given a mid-latitude continental
location and strong teleconnections with Pacific and Arctic
sea-surface temperature oscillations. Whereas climate pro-
jections at all scales are subject to the same sources of uncer-
tainty, their relative magnitudes and natural internal
variability in particular, will differ according to the nature of
the regional climate regime and its sensitivity to anthropo-
genic interference in the global energy balance. Here, our
focus is on the provision of meaningful information for local
adaptation planning regarding the timing of noticeable cli-
mate change and the role of natural variability.

This work is related to studies of climate change and
impacts in the South Saskatchewan River Basin (SSRB;
Sauchyn et al., 2016) which included interactions (via inter-
views and presentations) with stakeholders, such as ranchers
and farmers whose livelihoods depend on water availability
in the SSRB watershed, as well as more rigorous scientific
approaches, including hydrological modelling. This and
other studies (e.g., Fennell et al., 2016; Jacques et al., 2010;
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Pittman et al., 2011) have identified uncertainty in future cli-
mate as being one of the dominant stressors for
farming/ranching communities and, thus, any further infor-
mation we can provide on future uncertainty is of value to
these communities.

2 | METHODOLOGY

2.1 | GCM output

GCM results from the most recent coupled model
intercomparison project phase 5 (CMIP5) (Taylor et al.,
2012; Sheffield et al., 2013; Maloney et al., 2014) provided
the climate change projections used in this research. Since
teleconnections such as the El Niño–Southern Oscillation
(ENSO) and the Pacific Decadal Oscillation (PDO) impact
the climatology and hydrology of western North America,
including the Canadian prairies (Mantua et al., 1997;
Higgins et al., 2000; Bonsal et al., 2001; Mantua and Hare,
2002; McCabe and Dettinger, 2002; Stewart et al., 2005;
St. Jacques et al., 2010; Whitfield et al., 2010; Wise, 2010;
Lapp et al., 2012; Meehl et al., 2013), a subset of 10 GCMs
which better simulated ENSO and PDO conditions was
selected for use in this study. These GCMs were identified
by Sheffield et al. (2013) as being higher performance
models in the simulation of near-surface air temperature and
precipitation patterns over North America during El Niño
and La Niña episodes. Since extratropical ENSO tele-
connection dynamics are tied to upper-tropospheric pro-
cesses and are strongest during the boreal winter, evaluation
of the CMIP5 models was based on how well they
reproduced the winter composite 300 hPa geopotential
height patterns in the National Centers for Environmental
Prediction/ National Center for Atmospheric Research
(NCEP/NCAR) reanalysis. Sheffield et al. (2013) also
showed that the CMIP5 models were able to capture the
PDO influence on North American surface air temperature
but did not do so well in reproducing precipitation patterns
(although some of this may have been due to the sparsity of
observed data for comparison in high latitudes). The charac-
teristics of these 10 higher performance GCMs are listed in
Table 1. We recognize that there is considerable uncertainty
in the influence of ENSO on North American climate
(e.g., Deser et al., 2017; Deser et al., 2018), and that typical
responses to ENSO events do not necessarily occur in every
episode, and hence other methods for assessing GCM per-
formance in simulating ENSO (and PDO) may identify dif-
ferent models.

Output from the historical simulations and climate
change runs for representative concentration pathways
(RCPs) 2.6, 4.5, 6.0 and 8.5 (Moss et al., 2010) were down-
loaded and processed, totalling 37 realizations of future

climate. These RCP values represent the radiative forcing in
the year 2100 relative to pre-industrial values (so +2.6,
+4.5, +6.0 and +8.5 Wm−2). Where possible a single reali-
zation for each RCP was included in the dataset so that each
GCM was considered equally. There were two exceptions to
this: CanESM2 had runs for only RCP2.6, RCP4.5 and
RCP8.5, while HadGEM2-CC had runs for only RCP4.5
and RCP8.5. The CMI (Hogg, 1994, 1997), a relatively sim-
ple measure of precipitation excess (or deficit) compared
with potential evapotranspiration (PET) was calculated and
totalled for the months of May, June and July and henceforth
called summer CMI. PET was determined using a simplified
Penman-Monteith method with altitude and maximum, mini-
mum and mean temperatures as inputs. For each realization,
a regional average value was calculated for western Canada.
Changes from the 1986–2005 mean were then calculated for
seasonal surface air temperature and precipitation, and for
summer CMI. Ensemble-mean changes for each RCP were
also calculated.

We also considered output from a further 24 CMIP5
GCMs, totalling 69 experiments, which had complete
datasets for the four climate variables (precipitation, mean,
maximum and minimum temperature) we required, in order
to determine how the results from our subset of 10 GCMs
compared with this larger dataset. Details for these addi-
tional GCMs are contained in Table S1.

2.2 | Variance partitioning

Following the methodology of Hawkins and Sutton (2009),
the uncertainty in the projections of the selected CMIP5
GCM dataset was attributed to the three sources for seasonal
mean surface air temperature and precipitation and summer
CMI. Initially a fourth order polynomial was fitted to the
model output time series using ordinary least squares for the
period 1950–2099. Hawkins and Sutton (2009) then
weighted the models used in their study by their ability to
simulate the observed global mean warming, thus down-
playing those models which warmed too much or too little.
In our case, no weighting was applied since we had already
pre-selected a subset of 10 GCMs considered to be better
able to simulate the climate of western Canada, based on the
results in Sheffield et al. (2013), as described earlier. The
contributions of each of the three sources of uncertainty to
the total variance of the projections were then calculated as
follows:

• Model uncertainty: for each scenario this was estimated
from the variance in the different model prediction fits.
The multi-scenario mean of this variance was then taken
as an estimate of the model uncertainty component.
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• Scenario uncertainty: the variance of the multi-model
means for the four scenarios (RCPs 2.6, 4.5, 6.0 and 8.5).

• Natural internal variability: the variance of the residuals
after the fitting of the fourth order polynomial to each
individual projection, calculated across all scenarios and
time. The multi-model mean of these variances was taken
to be the internal variability component and is constant
in time.

2.3 | Time of emergence of climate signals

The ToE is a measure of when the climate change signal
(S) emerges from the background noise (N) of natural cli-
mate variability. It can be calculated in a number of differ-
ent ways since it depends on user-driven choices of climate
variables, the spatial and temporal scales under consider-
ation, the baseline time period relative to which changes
are measured and the threshold at which emergence is
defined (Kirtman et al., 2013). A number of different
methods have been used to calculate the ToE
(e.g., Christensen et al., 2007; Giorgi and Bi, 2009; Haw-
kins and Sutton, 2012; de Elía et al., 2013, 2014; Sui et al.,
2014; Lehner et al., 2017; Li et al., 2017). In common with
Sui et al. (2014), the inter-annual SD of the seasonal means
provided our estimate of the climate noise. This was calcu-
lated using the pre-industrial control simulation from each
of the GCMs in our selected subset; these control simula-
tions varied in length from 251 to 1000 years, with most
simulations being longer than 500 years. For each GCM,
the time series of the signal from 1986 to 2099 was indi-
cated by the change in 20-year running means relative to
the baseline period of 1986–2005. Using 20-year running
means filters out the inter-annual variability while retaining

the multi-decadal variability of the signal (Giorgi and Bi,
2009). In contrast to Sui et al. (2014), who calculated a
median signal and median noise from their GCM suite to
obtain a median S/N ratio, we calculated the S/N ratio for
each GCM before calculating the median ratio value.
Latitudinally-weighted area averages of the grid-box S/N
ratio values provided us with our regional average value
for western Canada. In order to display the spatial distribu-
tion of median ToE, the grid box S/N values for each GCM
were interpolated onto a common 2.5� latitude/longitude
grid (the same resolution as that used in van Oldenborgh
et al., 2013) using MATLAB's bilinear interpolation rou-
tine before the median S/N ratio and associated ToE were
calculated.

Although the climate change signal first emerges from
the background noise when S/N > 1, this does not necessar-
ily mean that the signal is discernible. Using S/N > 2 is a
more robust approach since the Student's t test indicates that
a S/N value greater than 1.96 is required to reject the null
hypothesis (S = N) at the 95% confidence level (de Elía
et al., 2014) when sample sizes are sufficiently large
(i.e., greater than 100). Although our sample size is small
(with a critical t-value of 2.09 for a significant difference of
means at the 95% confidence level), implying that our results
are not necessarily robust, for simplicity we use S/N > 1 to
indicate that climate signal has emerged from the noise of
background variability, and S/N > 2 to identify a “signifi-
cant” signal.

We also examined the pre-industrial control simulations
to determine how S/N ratios in these simulations compared
with those using the future climate projections. In this case,
the long-term mean for each control simulation was used to
represent baseline conditions and then the time series of the

TABLE 1 Details of the 10 higher performance CMIP5 models selected for study

GCM Modelling centre
Horizontal resolution
(�lon × �lat) Available RCPs

BCC-CSM1-1 Beijing Climate Centre, Meteorological Administration, China 2.8 × 2.8 2.6, 4.5, 6.0, 8.5

CanESM2 Canadian Centre for Climate Modelling and Analysis 2.8 × 2.8 2.6, 4.5, 8.5

CCSM4 National Center for Atmospheric Research, USA 1.25 × 0.94 2.6, 4.5, 6.0, 8.5

GFDL CM3 NOAA/Geophysical Fluid Dynamics Laboratory, USA 2.5 × 2.0 2.6, 4.5, 6.0, 8.5

GISS-E2-R NASA Goddard Institute for Space Studies, USA 2.5 × 2.0 2.6, 4.5, 6.0, 8.5

HadGEM2-CC Met. Office Hadley Centre, UK 1.875 × 1.25 4.5, 8.5

IPSL-CM5A-LR L'institut Pierre Simon Laplace, France 3.75 × 1.8 2.6, 4.5, 6.0, 8.5

IPSL-CM5A-MR L'institut Pierre Simon Laplace, France 2.5 × 1.25 2.6, 4.5, 6.0, 8.5

MIROC5 Atmosphere and Ocean Research Institute (The University of Tokyo), National
Institute for Environmental Studies, and Japan Agency for Marine-Earth
Science and Technology, Japan

1.4 × 1.4 2.6, 4.5, 6.0, 8.5

NorESM1-M Norwegian Climate Centre, Norway 2.5 × 1.9 2.6, 4.5, 6.0, 8.5

Note. For complete reference details for the CMIP5 GCMs, please see Table 9.A.1 in Flato et al. (2013).
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signal for the length of the control simulation was indicated
by the change in 20-year running means relative to this base-
line. As above, the inter-annual SD of the seasonal means
provided the noise estimate.

3 | RESULTS

3.1 | Changes in mean surface air
temperature, precipitation and summer CMI

Figures 1–3 illustrate the changes (with respect to the
1986–2005 average) in mean surface air temperature, precip-
itation and summer CMI, respectively, for the period
1850–2100 for western Canada as a whole. Each of the
10 selected GCMs and an ensemble-mean value are illus-
trated for each of the four RCPs. On the right-hand side of
each figure the range of results for each RCP is shown for
the 24 additional GCMs. It is immediately apparent from
these figures that the differences between the four RCPs are
most distinct for surface air temperature (Figure 1) compared
to precipitation (Figure 2) and summer CMI (Figure 3). For
mean surface air temperature (Figure 1), variability is largest
in winter and smallest in summer during both the historical
and future simulations for both sets of GCM data. While
ensemble-mean values for all RCPs indicate increases in
future mean surface air temperature, and that these projected
increases are largest in winter, projected changes in summer
also are almost all positive, that is, consistently greater than
the 1986–2005 mean value, in both the ensemble-mean
values and the individual realizations. For the 24 additional
GCMs, however, the lower bound of the future range is

negative for all RCPs, indicating that values lower than the
1986–2005 mean occur in some realizations.

For precipitation (Figure 2), all seasons exhibit similar
levels of variability and differences between the RCPs are
not distinct. On the whole, the ensemble-mean projections
show increased precipitation in winter, spring and fall, with
RCP8.5 exhibiting the largest increase. In summer,
ensemble-mean values indicate little change or, for RCP8.5,
slight decreases in future precipitation when compared with
the 1986–2005 mean. However, variability is large and indi-
vidual realizations suggest decreases in precipitation which
exceed 40% in some years. The 24 additional GCMs give
similar results.

For summer CMI (Figure 3), ensemble-mean values for
all RCPs indicate that future values for this index are signifi-
cantly decreased, that is, they are lower than the 1986–2005
mean. The severity of this drying is largest for RCP8.5. Var-
iability in projected values of summer CMI is large and
while the trend is for drier conditions in the future, there are
still years when index values are greater than the 1986–2005
mean. The data range for the 24 additional GCMs shows
similar results.

3.2 | Variance partitioning

Figures 4–6 illustrate the contribution of each of the three
uncertainty components to the total variance of decadal-
mean surface air temperature, precipitation and summer
CMI projections, respectively, for our subset of 10 GCMs.
For all three variables, the internal variability uncertainty
component (orange) is largest at the beginning of this
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FIGURE 1 Change in mean
surface air temperature (�C) for western
Canada, 1850–2100, with respect to the
1986–2005 mean. Individual GCMs are
indicated by fine coloured lines and
ensemble-means by bold coloured lines.
Vertical bars on the right-hand side of
the figures indicate the range of results
from 2006–2100 for the larger GCM
dataset for comparison [Colour figure
can be viewed at
wileyonlinelibrary.com]
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century and decreases towards 2100. For mean surface air
temperature (Figure 4), internal variability is largest in win-
ter and spring, representing about 95% of the total variance
initially and still approximately 40% of the total at the end of
this century. In summer, this component represents only

10% of the total variance in temperature uncertainty at the
end of this century. The model uncertainty component (blue)
is largest in summer, but still represents only about 25% of
total variance at mid-century; in other seasons it typically
contributes between 5% and 15% of the total variance. The
scenario uncertainty component (green) increases over time
in all seasons and in summer represents about 70% of the
total variance by the end of the century.

For precipitation (Figure 5), the internal variability and model
uncertainty components are the major contributors to the total
variance in the projections, with the scenario uncertainty compo-
nent generally representing only about 5%–10% of the total by
the end of the century. Model uncertainty is largest in spring and
summer (approximately 45% and 25%, respectively, of the total
variance in projections by 2100). Internal variability is very
much the dominant source of uncertainty, accounting for more
than 80% of the variance in the projections of fall and winter pre-
cipitation for the next several decades.

For summer CMI (Figure 6), internal variability accounts
for about 95% of the total variance in projections at the
beginning of the century; this decreases to about 30% by
2100. Scenario uncertainty does not contribute to the total
variance in the projections until about 2025 and represents
about 40% of total variance by 2100. The model uncertainty
component increases from 5 to about 30% by the end of the
century. Examination of Figures 4–6 indicates that these var-
iance fractions for summer CMI are a hybrid of the results
for summer temperature and precipitation, as would be
expected given their role in the calculation of this variable.
Internal variability and emission scenarios uncertainty play
larger roles in future projection uncertainty for summer CMI
compared to summer temperature and summer precipitation,
respectively.

FIGURE 2 Change in precipitation
(%) for western Canada, 1850–2100,
with respect to the 1986–2005 mean.
Individual GCMs are indicated by fine
coloured lines and ensemble-means by
bold coloured lines. Vertical bars on the
right-hand side of the figures indicate the
range of results from 2006–2100 for the
larger GCM dataset for comparison
[Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 3 Change in summer CMI (mm) for western Canada,
1850–2100, with respect to the 1986–2005 mean. Individual GCMs
are indicated by fine coloured lines and ensemble-means by bold
coloured lines. Vertical bars on the right-hand side of the figures
indicate the range of results from 2006–2100 for the larger GCM
dataset for comparison [Colour figure can be viewed at
wileyonlinelibrary.com]
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Examination of similar plots for our larger group of
GCMs indicates very similar results (see Figures S1–S3 in
the Supplementary Material). Given these results, we con-
tinue our analysis by considering only the subset of
10 GCMs.

3.3 | Time of emergence

S/N ratios calculated from the pre-industrial control simulations
for mean temperature, precipitation and summer CMI showed

very similar results (see Figures S4, S5 and S6 in the Supple-
mentary Material). In all cases, S/N ratios did not exceed ±1
and very rarely exceeded ±0.5. Examination of S/N ratios at
the grid scale yielded similar results (not shown).

Although ToE and S/N ratios were calculated for all
RCPs, for conciseness results are shown only for RCP8.5
for western Canada as a whole (Figures 7–9). The
increase in global carbon emissions over the last two
decades has been consistent with higher scenarios, such
as RCP8.5 (Hayhoe et al., 2017). Note that years

FIGURE 5 Fraction of total
variance in decadal mean precipitation
projections explained by internal
variability, model uncertainty and
scenario uncertainty for western Canada
[Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 4 Fraction of total
variance in decadal mean surface air
temperature projections explained by
internal variability, model uncertainty
and scenario uncertainty for western
Canada [Colour figure can be viewed at
wileyonlinelibrary.com]
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correspond to the mid-point of the 20-year period under
consideration (so, e.g., plotting starts at 1986 which rep-
resents the mid-point of the 1976–1995 20-year period).
For the first eleven 20-year periods (up to 1985–2005)
model output is used from the historical runs; historical
and future runs are combined up to the 20-year period
2005–2024 and thereafter model output is from the future
runs only.

For RCP8.5, the ToE of the mean surface air temperature
change signal (Figure 7) varies by GCM, with the largest
spread among the GCMs occurring in summer. In this sea-
son, S/N > 1 for almost all GCMs in the 20-year period
centred on 2015. The earliest occurrence of S/N > 2 is about
2020, and by about 2055 S/N is always greater than two for
all GCMs. The median S/N ratio indicates that the climate
change signal emerges from the background noise (S/N > 1)
around 2015 but does not become significant (S/N > 2) until
about 2035. For winter, the earliest occurrence of S/N > 1 is
about 2035, and all GCMs exhibit values greater than this
by about 2080. The median ToE for S/N > 1 is around
2055, and becomes significant about 20 years later, in 2075.
Not all GCM results are significant by the end of the cen-
tury, although all indicate that S has emerged from N by this
time. With the exception of the winter season, all GCMs
indicate significant results by about 2075. ToE values gener-
ally indicate that the 2 S/N thresholds considered here are
exceeded earlier for RCP8.5 and later for RCP2.6, as would
generally be expected. Both S/N thresholds are exceeded
earlier in fall (median value for significant change is 2050)
than in spring (significant change occurs by about 2065) for

RCP8.5, and the other RCPs also exhibit the same behaviour
for these seasons.

For precipitation (and summer CMI), we consider both
positive and negative threshold values, that is, ±1 and ±2,
since future projections indicate both increases and
decreases in these variables. Figure 8 illustrates that for pre-
cipitation there is more variability in S/N values in spring
and summer than in fall and winter and that values for indi-
vidual GCMs do not necessarily consistently exceed S/N
threshold values, which is the case for mean surface air tem-
perature. All GCMs project increases (positive S/N values)
in future winter precipitation, compared to the 1986–2005
baseline. While the median signal emerges from the noise
around 2075 in winter and around 2080 in spring, significant
results (i.e., S/N > 2) are not obtained before the end of the
century in any season. Only a single GCM, BCC-CSM1-1,
indicates a significant increase in precipitation from about
2075 onwards in winter. For summer, S/N ratios are both
positive and negative, with median values hovering around
zero before becoming slightly negative towards the end of
the century. For RCP2.6, median S/N values indicate that
the signal does not emerge from the noise in any of the sea-
sons, or for summer and fall for RCPs 4.5 and 6.0 (not
shown).

FIGURE 6 Fraction of total variance in decadal mean summer
CMI projections explained by internal variability, model uncertainty
and scenario uncertainty for western Canada [Colour figure can be
viewed at wileyonlinelibrary.com]

FIGURE 7 Signal-to-noise ratio for western Canada mean
surface air temperature for RCP 8.5. Each coloured line denotes a
different GCM. Black dots indicate median values. Dashed lines
indicate threshold values [Colour figure can be viewed at
wileyonlinelibrary.com]
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Figure 9 shows the S/N ratio time series for summer
CMI. The majority of the GCMs considered here indicate
drier future conditions (i.e., negative S/N ratios) than those
of the baseline period. The median signal first emerges from
the noise about 2050 and becomes significant towards the
end of the century, around 2085. With the exception of
GFDL-CM3, GISS-E2-R and BCC-CSM1-1, all GCMs indi-
cate significant S/N values by the end of the century, with

IPSL-CM5A-LR exhibiting the earliest significant result,
between 2070 and 2075. The PET component of the summer
CMI, which is temperature driven, exceeds the precipitation
component and this results in these signal-to-noise ratios
which indicate emergence of the climate change signal about
2050 and significant change by the end of the century. Nei-
ther threshold is exceeded for RCP2.6, and S/N = 2 is not
exceeded for RCP4.5 (not shown).

The median ToE of climate change signals for RCP8.5
was also examined on a grid-box by grid-box basis for west-
ern Canada, as described earlier. The median ToE was
defined as the time at which the median S/N ratio crossed
the two thresholds considered (S/N = 1 and S/N = 2) and
remained consistently above those thresholds during the
study period. Results are shown in Figures 10–14.

For mean surface air temperature, the signal emerges
from background noise (S/N > 1) earliest in summer, with
median ToEs between 2010 and 2020 (Figure 10) and
becomes significant (S/N > 2) in this season between 2020
and 2035 (Figure 11). Latest emergence for S/N > 1 and
S/N > 2 occurs in the west central prairies in winter, around
2055 and after 2070, respectively. For precipitation
(Figure 12), the S/N = 1 threshold is not exceeded at all in
summer or in the majority of grid boxes in spring and fall,
that is, in general the signal does not emerge from the noise
in these seasons during this century. In the handful of grid
boxes where the signal does emerge in spring and fall, it is
generally towards the end of the study period, certainly after

FIGURE 8 Signal-to-noise ratio for western Canada precipitation
for RCP8.5. Each coloured line denotes a different GCM. Black dots
indicate median values. Dashed lines indicate threshold values [Colour
figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 Signal-to-noise ratio for western Canada summer
CMI for RCP 8.5. Each coloured line denotes a different GCM. Black
dots indicate median values. Dashed lines indicate threshold values
[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 10 Median ToE for mean temperature for S/N = 1 for
RCP8.5. Dates indicate the centre value of the 20-year period. White
areas indicate where the signal does not emerge in the study time
period. AB, Alberta; MB, Manitoba; SK, Saskatchewan [Colour figure
can be viewed at wileyonlinelibrary.com]
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2075. In winter, the S/N > 1 threshold is exceeded earliest
in the northeast of the region, with median ToE around
2050, and later elsewhere (2080s onwards). In some grid

boxes in central and southern areas, this threshold is not
exceeded in this season this century. With the exception of
the winter season, where three grid boxes in the north-
easternmost corner of the study region exhibit median times
of emergence in the 2080s and later, significant signals are
not obtained in any season (not shown). For summer CMI
(Figure 13), median ToE for S/N > 1 is between 2035 and
2075, with later emergence generally being in the west of

FIGURE 11 Median ToE for mean temperature for S/N = 2 for
RCP8.5. Dates indicate the centre value of the 20-year period. White
areas indicate where the signal does not emerge in the study time
period. AB, Alberta; MB, Manitoba; SK, Saskatchewan [Colour figure
can be viewed at wileyonlinelibrary.com]

FIGURE 12 Median ToE for precipitation for S/N = 1 for
RCP8.5. Dates indicate the centre value of the 20-year period. White
areas indicate where the signal does not emerge in the study time
period. AB, Alberta; MB, Manitoba; SK, Saskatchewan [Colour figure
can be viewed at wileyonlinelibrary.com]

FIGURE 13 Median ToE for summer CMI for S/N = 1 for
RCP8.5. Dates indicate the centre value of the 20-year period. White
areas indicate where the signal does not emerge in the study time
period. AB, Alberta; MB, Manitoba; SK, Saskatchewan [Colour figure
can be viewed at wileyonlinelibrary.com]

FIGURE 14 Median ToE for summer CMI for S/N = 2 for
RCP8.5. Dates indicate the centre value of the 20-year period. White
areas indicate where the signal does not emerge in the study time
period. AB, Alberta; MB, Manitoba; SK, Saskatchewan [Colour figure
can be viewed at wileyonlinelibrary.com]
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the region. The median ToE of significant signals (S/N > 2;
Figure 14) is between 2065 and the end of the century, with
earliest emergence occurring in the eastern half of the
region, between 2065 and 2070. Some grid boxes in Alberta
do not show significant signals this century. Figure 15 illus-
trates the S/N ratio for summer CMI for a single grid box in
the southwest corner of the region for each GCM. This plot
indicates that, while the general trend is for drier conditions,
that is, decreases in summer CMI, times of signal emergence
(S/N > 1) and significant (S/N > 2) change can vary consid-
erably. By the end of the century, the signal has emerged
from the background noise for all GCMs (as early as 2015
for HadGEM2-CC and as late as 2075 for GFDL-CM3) but
is not significant by this time for GFDL-CM3, GISS-E2-R
and MIROC5. HadGEM2-CC, however, exhibits the earliest
significant signal, in the early 2040s.

4 | DISCUSSION AND
CONCLUSIONS

Many climate change studies provide projected changes in
weather variables, primarily temperature and precipitation,
for different greenhouse gas emissions scenarios, to deter-
mine impacts on sectors such as water resources and agricul-
ture. However, for decision-makers and adaptation planning,
the range and probability of these projected changes is of
more importance than the absolute magnitude of the projec-
ted changes (Hawkins and Sutton, 2012). For the Prairie
Provinces of western Canada, this paper has examined the
relative significance of uncertainty in future climate projec-
tions from a subset of the CMIP5 GCMs in two ways:

1. By determining the contribution of the three main
sources of uncertainty (model, scenario, natural variabil-
ity) to the total variance of these future projections, and

2. By determining the timing of the emergence of the cli-
mate signal, using two different thresholds, from the
background of natural climate variability.

In regions where natural climate variability is large, cli-
mate is less predictable. By partitioning the three main
sources of uncertainty in the climate projections considered
here, we have shown that natural climate variability plays an
important role in future projection uncertainty until at least
mid-century for all variables. The exception to this is sum-
mer mean surface air temperature, where both model and
scenario uncertainty grow in importance over time, so that
by the end of the century natural variability represents only
10% of the total variance in projections in this season, com-
pared to between 30% and 40% in the other seasons. For pre-
cipitation, however, natural variability continues to account
for between 40% and 60% of the total variance by the end of
this century, with model uncertainty being the next largest
contributor. Scenario uncertainty represents only 5%–10% of
the variance in precipitation projections by the end of the
century; this supports the results illustrated in Figure 2,
which shows that it is more difficult to distinguish between
the different radiative forcing scenario projections for this
variable than for mean temperature or summer CMI. For
summer CMI, calculated from both temperature and precipi-
tation variables, the natural variability component of uncer-
tainty gradually decreases from 95% at the beginning of the
study period to about 30% at the end of the century, with
model and scenario uncertainty contributing almost equally
at the end of the century. While model and scenario uncer-
tainty may be reduced as climate models improve and emis-
sions projections become more accurate, the uncertainty
attributable to the natural variability of future climate cannot
be reduced (Deser et al., 2012).

In order to examine the significance of the projected future
changes, we looked at the time when the climate change sig-
nal exceeds natural climate variability, that is, the time of
emergence (ToE). This is a key question for adaptation policy
and planning since, in general, natural and man-made systems
are inherently adapted to the local levels of natural variability.
It is only when changes move outside of this range that major
impacts will possibly occur (Hawkins and Sutton, 2012).
Although the climate change signal emerges from background
noise when S/N > 1, it may not be discernible at this thresh-
old and so we used S/N > 2 to define a significant signal.
When exactly significant climate change becomes visible will
vary with location and season. Our results indicate that the
median mean summer surface air temperature signal across
the prairie region emerges from the background noise in the
20-year period centred on 2015 and becomes significant
around 2030, compared with 2055 and 2075, respectively, for
the winter season. This is in keeping with results from

FIGURE 15 Signal-to-noise ratio for summer CMI for each
GCM for RCP8.5 for a single grid box in the south-west corner of the
Prairie Provinces [Colour figure can be viewed at
wileyonlinelibrary.com]
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Christensen et al. (2007), Mahlstein et al. (2011) and Hawkins
and Sutton (2012), which showed that the earliest ToE for sig-
nificant warming in most regions is in the summer season.
Lehner et al. (2017) examined ToE in summer surface air
temperature observations and, after dynamical adjustment to
account for the effect of atmospheric circulation changes on
natural variability, calculated ToE as between 2000 and 2010
in our study region, although uncertainty in these results is
greater than 10%. Using a large ensemble of simulations from
the community earth system model (CESM) GCM, Lehner
et al. (2017) showed that the forced warming signal emerges
earlier in the observations than is suggested by the models.
Examination of the pre-industrial S/N ratios here indicated
that values rarely exceeded ±0.5, thus indicating that signifi-
cant signals do not occur in an unforced climate.

For the GCMs considered here, times of emergence for
precipitation are more variable and not always consistent,
that is, the signal may emerge from the background noise,
but does not necessarily remain so throughout the time
period under consideration. Median S/N ratios indicate that
the signal emerges from the background noise by about
2070 in winter and slightly later in spring, but significant
S/N values (i.e., >2) do not occur in any season. Use of a
wider smoothing window (e.g., 30 years rather than 20) for
this variable might facilitate more robust ToE detection since
this variable has a larger intrinsic variability than mean tem-
perature (Curry, personal communication). In contrast to
mean air surface temperature, the precipitation signal is not
generally significant (S/N > 2) on a grid-box by grid-box
basis in any season, although the signal does emerge from
the background noise in winter over most of the region
towards the end of the century. This is slightly later than
results from Christensen et al. (2007) and Giorgi and Bi
(2009) which indicated ToE as being in the middle of this
century for mid-latitude areas in the northern hemisphere.

A key message from the results of this study is that
resolving differences among climate models could reduce
the uncertainty in projections, but it is still largely irreduc-
ible due to internal climatic variability. Deser et al. (2012,
2014) and Fischer et al. (2013) reached similar conclusions
from experiments using large ensembles of projections from
earth system models. Deser et al. (2012) suggested that the
limits on climate prediction imposed by natural variability
are most severe in the mid to high latitudes of North Amer-
ica and in boreal winter; that is, in the critical season for the
natural storage of water for our targeted region. We have
shown that natural variability uncertainty is the largest con-
tributor to uncertainty in precipitation projections in our
region, continuing to contribute between 45% and 65%,
depending on season, at the end of the century.

Further evidence in our results of the influence of natural
variability is fluctuations in the time of emergence of a climate

change signal in projections of precipitation and summer CMI.
S/N ratios vary considerably among GCMs. Median ToE for
precipitation indicates that while the signal emerges from the
background noise by the 2070s in winter and spring for the
region as a whole, significant precipitation change is not seen
this century in any season. For summer CMI, median ToE for
significant change occurs about 2085, although not all GCM
results suggest significant change by the end of the century, and
for two GCMs, GFDL-CM3 and GISS-E2-R, the signal has not
emerged from the noise by this time. Other analyses similar to
ours, but for other continents (Hawkins and Sutton, 2009, 2011;
Kirtman et al., 2013, Sui et al., 2014), point to the significance
of natural variability, but not to the same extent as in our find-
ings. This outcome was anticipated from global weather data
showing that only east-central Asia (Siberia/Mongolia) has
greater temperature seasonality (and comparable inter-annual
variability) than the northern plains of North America. Paleo-
climate (tree-ring) data from this region (e.g., Sauchyn et al.,
2015; Sauchyn and Ilich, 2017) reveal a range of hydroclimate
over the past millennium that exceeds observations, display sig-
nificant modes of natural variability at annual and decadal
scales, and include episodes of wet and dry climate of greater
amplitude and duration than in the instrumental record.

The results of this study provide planners, policy makers
and engineers in western Canada with regionally relevant mea-
sures of uncertainty. Whereas model uncertainty is important at
all timescales, and emissions scenarios are relevant in the lon-
ger term, natural variability is critical over the next several
decades, which correspond to the planning horizon of concern
to most practitioners. These results emphasize that reduction in
uncertainty in future projections is potentially limited in this
region since the role of natural variability is large, especially
for precipitation. This work informs the use of climate model
projections in this region and the application of climate science
to impacts assessment and adaptation planning. The climate of
future decades, while increasingly human altered, will also
reflect to a large extent the natural internal variability of the
regional hydroclimate and stochastic atmospheric processes.
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