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Abstract

Climate-impact projections are subject to uncertainty arising from climate models, greenhouse gases emission scenarios, 

bias correction and downscaling methods (BCDS), and the impact models. We studied the effects of hydrological model 

parameterization and regionalization (HM-P and HM-R) on the cascade of uncertainty. We developed a new, widely-appli-

cable approach that improves our understanding of how HM-P and HM-R along with other uncertainty drivers contribute 

to the overall uncertainty in climate-impact projections. We analyzed uncertainties arising from general circulation models 

(GCMs), representative concertation pathways, BCDS, evapotranspiration calculation methods, and specifically HM-P and 

HM-R. We used the Soil and Water Assessment Tool, a semi-physical process-based hydrologic model with a high capability 

of parameterization, to project blue and green water resources for historical (1983–2007), near future (2010–2035) and far 

future (2040–2065) periods in Alberta, a western province of Canada. We developed an Analysis of Variance (ANOVA)-

Sequential Uncertainty Fitting Program approach, to decompose the overall uncertainty into contributions of single drivers 

using the projected blue and green water resources. The monthly analyses of projected water resources showed that HM-P 

and HM-R contribute 21–51% and 15–55% to the blue water, and 20–48% and 15–50% to the green water overall uncertainty 

in near future and far future, respectively. Overall, we found that in spring and summer seasons uncertainty arising from 

HM-P and HM-R dominates other uncertainty sources, e.g. GCMs. We also found that global climate models are another 

dominant source of uncertainty in future impact projections.

Keywords Uncertainty analysis · Uncertainty decomposition · Climate change · Natural climate variability · SWAT  · 

ANOVA-SUFI-2

1 Introduction

Climate change as a major international environmental chal-

lenge is altering water resources. Numerous studies have 

assessed and quantified projections of future climate change 

and corresponding impacts on water balance components 

around the globe using various climate-impacts models 

(e.g. Abbaspour et al. 2009; Arnell 1999; Arnell and Gos-

ling 2016; Asong et al. 2016; Barnett et al. 2005; Bavay 

et al. 2013; Beniston 2012; Erler and Peltier 2016; Gualdi 

et al. 2013; Maheu et al. 2016; Schar et al. 2016; Seneviratne 

et al. 2016; Vaghefi et al. 2017). Uncertainty is an inescap-

able characteristic of climate projections (Moss et al. 2010). 

It results from a lack of knowledge, lack of accurate input 

data, uncertain undrestanding of natural processes, and disa-

greement among experts (IPCC 2013; Morgan and Henrion 

1990). Characterization and quantification of uncertainty 
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in climate change projections are essential for detection of 

changes in hydro-climatic variables and for effective climate 

change adaptation and mitigation strategies (IPCC 2013). 

Scientists and decision-makers agree that recommendations 

and adaptation scenarios based on a single climate model are 

unreliable. Consideration of multiple models under various 

possible futures climate should provide more reliable results 

albeit with higher uncertainty (Gobiet et al. 2014; Hallegatte 

2009; O’Neill et al. 2014, 2017; van den Bergh 2017).

Projections of impacts of climate change on hydrologic 

regimes are prone to cascades of uncertainty due to natural 

variability of the climate, unknown future greenhouse gases 

emission trajectories, errors resulting from simplifications 

in global climate models (GCMs), dynamical or statistical 

downscaling methods, and hydrological models (Bosshard 

et al. 2013; Chen et al. 2011b; Gobiet et al. 2014). The 

numerous abbreviations used in this study are summarized 

in the Supplemental Information, Table SI.1.

A growing number of studies have considered multiple 

sources of uncertainty in modeling hydro-climatic impacts 

of climate change (Abbaspour et al. 2009; Bosshard et al. 

2013; Chen et al. 2011b; Harding et al. 2012; Hewitt et al. 

2016; Kay et al. 2009; Prudhomme and Davies 2009; Tekle-

sadik et al. 2017; Vetter et al. 2015, 2017; Wilby and Har-

ris 2006; Yip et al. 2011). Table 1 summarizes the differ-

ent sources of uncertainty and the significant findings of 

each study. Most of the above-mentioned literature has 

documented the contribution of GCMs, greenhouse gases 

emission scenarios (GGES), downscaling (DS) and hydro-

logical model structure (HM-S) components in the chain of 

uncertainties. However, there are only limited studies (e.g. 

Abbaspour et al. 2009; Poulin et al. 2011) which have quan-

tified the uncertainty associated with hydrological model 

parameterization (HM-P) and regionalization (HM-R) on 

projected hydrological changes. In general, Table 1 shows 

that uncertainty due to the choice of GCMs is the domi-

nant source in the chain of uncertainties. However, there 

is no agreement on the next major uncertainty sources. For 

instance, uncertainty due to the choice of DS, GGES, and 

selection of hydrological models (HM-S) have been reported 

as the second major uncertainty source in at least one of the 

reviewed studies in Table 1. Examination of Table 1 shows 

that the order of uncertainty sources (major to minor) varies 

spatially and temporally amongst the cases. More recently, 

studies have investigated multiple river basins covering vari-

ous climatic conditions to quantify the contribution of differ-

ent sources of uncertainty in the projection of hydrological 

changes (Hattermann et al. 2018; Vetter et al. 2015, 2017).

The studies in Table  1 have implemented different 

approaches for uncertainty analysis. Some have modeled 

uncertainty and demonstrated it as an uncertainty band (cat-

egory 1), while others have quantified the contribution of 

individual uncertainty sources using different uncertainty 

decomposition methods (category 2). Some studies from 

the former category employed Sequential Uncertainty Fit-

ting (SUFI-2) to capture the uncertainty of regionalization 

and parameterization of the hydrological models on water 

resources in different regions (Abbaspour et al. 2007; Fara-

marzi et al. 2009). These studies used the Soil and Water 

Assessment Tool (SWAT, Arnold et al. 1998, 2012) for 

projection of hydrological variables. Other studies in this 

category, i.e. Poulin et al. (2011), used a shuffled complex 

evolutionary algorithm (Duan et al. 1993) to analyze the 

parameter uncertainty of two hydrological models, namely 

HYDROTEL (Fortin et al. 2001) and HSAMI (Fortin 2000) 

in a snow-dominated river basin in Canada. For the lat-

ter category, Wilby and Harris (2006) used a probabilistic 

framework for assessing uncertainties in climate change 

impacts by applying a Monte Carlo approach to explore 

components of uncertainty in projected low river flow in the 

River Thames basin in Britain. Chen et al. (2011b), exam-

ined the effects of six different uncertainty sources on cli-

mate change impact projections of hydrology in a Canadian 

river basin. They calculated the mean annual hydrograph for 

each group to study the contributions of individual sources 

in overall uncertainty. They used a cumulative hydrograph 

derived from the mean hydrograph of each group and the 

cumulative distribution functions of 95% low flow and peak 

discharge. Yip et al. (2011), quantified the contribution of 

different uncertainty sources in the projection of surface 

air temperature using the analysis of variance (ANOVA) 

approach. The ANOVA approach has fewer assumptions as 

compared to other frequently used methods for uncertainty 

estimation, such as Recursive Model and Parameter Identifi-

cation (e.g. Thiemann et al. 2001; Wagener et al. 2003), clas-

sical Bayesian approaches (e.g. Haydon and Deletic 2009; 

Kuczera et al. 2006), pseudo Bayesian methods such as 

GLUE (e.g. Beven and Binley 1992; Freni et al. 2009), and 

methods based on Frequentist Statistical Inference (Montan-

ari 2007). The ANOVA approach can be used for uncertainty 

decomposition by determining deviations of each individual 

model projection from the ensemble mean of all projections 

(Deque et al. 2007; Yip et al. 2011). Further, Bosshard et al. 

(2013), improved the ANOVA method by proposing a sam-

pling technique between different model projections to avoid 

biased variance decomposition in analyses of the uncertainty 

decomposition of large-scale watershed modeling.

Overall, examination of Table 1 reveals that: (1) using 

the ANOVA is comparatively recent method and there is 

an increasing interest in using this approach for uncertainty 

decomposition; (2) there is limited information on the effects 

of hydrologic model parameterization (HM-P) and region-

alization (HM-R) scheme in the cascade of climate change 

uncertainty prediction, while the effects of hydrological 

model structure (HM-S) on overall uncertainty has been 

well considered in literature; and (3) there is spatiotemporal 
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variability on the order and share of different uncertainty 

sources. With this background, we devised a method to 

determine the contribution of HM-P and HM-R to the over-

all climate-impact uncertainty chain, and used this method 

to determine how spatial and temporal variation of hydro-

climate conditions affect the uncertainty decomposition 

results. We have hypothesized that parameterization and 

regionalization of a hydrologic model may have a significant 

contribution in the cascade of uncertainty and its magnitude 

may outweigh other major sources of uncertainty in climate-

impact projections.

To test our hypothesis, we used the previously calibrated-

validated SWAT model of Alberta, Canada (Faramarzi et al. 

2015, 2017) with the detailed model parameterization and 

regionalization at sub-basin level. This detailed model 

allows us to evaluate impacts of spatiotemporal hydro-cli-

matic variability on the uncertainty decomposition results. 

We performed our analyses over two future periods includ-

ing near future from 2010 to 2035, called S1, and far future 

from 2040 to 2065, called S2. We developed a compound 

approach consisting of the ANOVA method for decomposi-

tion of uncertainty sources and the SUFI-2 method for cap-

turing the uncertainty associated with HM-P and HM-R in 

the overall uncertainty cascade of projected hydro-climatic 

variables. In addition to the HM-P and HM-R, we considered 

six other sources of uncertainty in this study namely: GCMs, 

RCPs, RCMs, bias correction and downscaling (BCDS) of 

climate data, and two different potential evapotranspiration 

(ET) calculation methods, i.e. Penman–Monteith and Har-

greaves, which are widely-used approaches in hydrological 

models. We further quantified the share of each source of 

uncertainty and their interaction in the overall uncertainty. 

For this purpose, we quantified hydro-climate components 

including blue water availability (water yield plus deep 

aquifer recharge), green water flux (actual evapotranspira-

tion), green water storage (soil moisture), precipitation, and 

mean temperature for two future horizons (i.e., 2010–2035 

and 2040–2065). More information about the hydrological 

cycle of SWAT is presented in Figure SI.1 in Supplemental 

Information. For uncertainty decomposition, we aggregated 

the results from the sub-basin level to the provincial level.

2  Study area, data, and methods

2.1  Study area: Alberta, Canada

We tested our hypothesis using the province of Alberta 

as an example study area. Alberta with an area of about 

660,000 km2 has 17 large regional watersheds (Fig. 1), with 

considerable variability in hydro-climatic conditions, and 

each is projected to be highly influenced by future climate 

change (Masud et al. 2018). The watersheds principally 

originate from the east slopes of the Canadian Rockies 

and drain eastward to Hudson Bay through the provinces 

of Saskatchewan and Manitoba or northward to the Arctic 

Ocean. The province has relatively dry continental climate 

with warm summers and cold winters. Winter and sum-

mer temperatures vary from − 25.1 to − 9.6 °C and 8.7 to 

18.5 °C, respectively, while long-term mean annual tempera-

ture ranges from 3.6 to 4.4 °C (Jiang et al. 2017). Summer 

temperature can rise up to 40 °C while the lowest winter 

temperature can drop down to − 54 °C (Faramarzi et al. 

2017). Alberta’s landscape follows a gradient from exten-

sive lowlands, deeply incised valleys with a mean altitude 

of 170 m above sea level (m.a.s.l) in Wood Buffalo National 

Park in the northeast and peaking at an elevation of more 

than 3740 m.a.s.l in the Rocky Mountain along the south-

western border. This topographic variation, as well as the 

temporal variation in sea surface temperature of the Pacific 

Ocean, has a pronounced influence on the climate dynamics 

(Faramarzi et al. 2017). Average annual precipitation ranges 

from 300 mm  year−1 in the southeast to 450 mm  year−1 in 

the north, and increases from east to west, where it can reach 

600 mm  year−1 or more in the foothills of the Rocky Moun-

tains. The average annual precipitation across the province 

is 510 mm  year−1. The south and east-central portions are 

prone to drought conditions, sometimes persisting for sev-

eral years, although even these areas can also receive heavy 

precipitation and overland flooding (Faramarzi et al. 2017).

2.2  Input data and climate scenarios

2.2.1  Future global climate model data, bias correction, 

and downscaling technique

Although key components including ocean, atmosphere, 

and land surface of the earth and climate systems are rep-

resented in GCMs of the Fifth Assessment Report (IPCC 

2013), they are at scales that even coarse topographic fea-

tures such as mountain ranges or land–water interfaces 

that affect climate at the local scale are not resolved. These 

features have significant effects on the current climate and 

the responses of a region to climate change. Therefore, bias 

correction and downscaling of the GCM data are necessary 

before their use in regional impact analysis. Downscaling 

is a method to bridge the gap between coarse-scale GCMs 

(several ~ 100 km grids) to finer scales (~ 10 km grids). 

There are two distinct approaches to downscale GCM data 

including dynamic downscaling using a Regional Climate 

Model (RCM), and statistical downscaling using statisti-

cal relationships between local climate variables and GCM 

predictions (Chen et al. 2013). The performance of statisti-

cal bias correction methods to downscale meteorological 

variables from GCMs is reported to be satisfactory in dif-

ferent hydro-climatological studies (Chen et al. 2011a). In 
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this research, we examined two statistical bias correction 

approaches and dynamical downscaling, i.e. RCM in our 

analyses (see also Sect. 2.2.2). For statistical bias correction, 

we used the statistically downscaled data from the Pacific 

Climate Impacts Consortium (PCIC) with no additional bias 

correction (ND) to the local scale, i.e. Alberta. Secondly, we 

applied the delta change (Chen et al. 2011a) method (D) to 

PCIC data for further bias correction to represent Alberta 

climate conditions. There are various downscaling and bias 

correction methods available for climate change studies. 

The performance of these methods has been compared in 

the literature (Räty et al. 2014). The delta change method 

reflects the climate change signals of each GCM into an 

identical baseline scenario. The PCIC data used in this study 

included nine sets of GCMs (1980–2069), under two RCPs 

(Cannon 2015; PCIC 2014), using subsets of the Coupled 

Model Inter-Comparison Project (CMIP5). A description of 

the models is summarized in Table 2. Two selected RCP 2.6 

(van Vuuren et al. 2011) and RCP 8.5 (Riahi et al. 2011), 

properly represent a large range of uncertainty. RCP 2.6 

describes the best case for limiting anthropogenic climate 

change, while in RCP 8.5 carbon emissions rapidly increase 

by the end of the century. A total number of 2150 grid-points 

were located in the study area based on the available data 

at a gridded resolution of roughly 10 km. Selected GCMs 

cover most of the possible uncertainty range of available 

IPCC models and provide the widest spread in the future cli-

mate (Cannon 2015). GCMs structure and spatial resolution 

are other uncertainty sources that contribute to the overall 

uncertainty of climate projection.

2.2.2  Future regional climate model data and initial 

condition

A suite of ten RCMs driven from an ensemble of atmos-

phere–ocean general circulation models (AOGCMs) over a 

domain of North America, covering the United States and 

most of Canada, are considered in this study. These data 

are available through the North American Regional Cli-

mate Change Assessment Program (NARCCAP). Table 3, 

Fig. 1  Study Area including geographic extents, sub-basins pattern delineated through hydrologic model, river system and the 17 main water-

sheds originating from western highlands
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summarizes the RCMs (Mearns 2014) that were used in 

this study. In NARCCAP, the RCMs simulations were 

produced in two phases. In the first phase, simulations 

from various regional models, i.e. CRCM, ECP2, HRM3, 

MM5I, RCM3 and WRFG RCMs were produced according 

to boundary conditions from National Centers for Envi-

ronmental Prediction (NCEP) reanalysis II for 1981–2003 

reference period (Mearns et al. 2009). In the second Phase, 

RCM simulations (~ 50  km grids) for the 1970–1999 

period and 2041–2070 future scenarios were produced 

using the boundary conditions of different GCMs (i.e. 

CCSM, CGCM3, GFDL, and HADCM3), and the Special 

Report on Emission Scenarios (SRES) A2 of the CMIP3 

emission scenario (Nakicenovic et al. 2000). We used the 

RCMs to examine two hydrologic model scenarios based 

on two potential evapotranspiration calculation methods: 

(1) Hargreaves (Hargreaves et al. 1985) method, which is 

based on precipitation and temperature time series; and (2) 

Penman–Monteith (Penman 1948), which requires rela-

tive humidity, solar radiation, and wind speed as well as 

precipitation and temperature time series. A total of 320 

climate grid-points were located in the study area based on 

the available data at a gridded resolution of roughly 50 km.

2.3  Hydrological model

The hydrologic model of choice for this study was SWAT 

(Arnold et al. 1998, 2012). SWAT is a continuous time, 

semi-physically based, semi-distributed, agro-hydrologic 

model running on daily time steps (See Figure SI.1 of the 

Supplemental Information for the schematic hydrological 

cycle in SWAT). The model has been developed to quantify 

the impacts of climate change and land management prac-

tices on water, sediment, and agricultural chemical yields 

in large complex watersheds with varying soils, landuse, 

and management conditions over long periods of time. 

The program, therefore, lends itself easily to climate and 

landuse change analyses. A more detailed description of 

the SWAT model is provided in Arnold et al. (2012). We 

used the SWAT model of Alberta that had already been set 

up, calibrated and validated for the period of 1983–2007 

(Faramarzi et al. 2017, 2015) using the SUFI-2 algorithm 

of SWAT-CUP (Abbaspour et al. 2007, 2017). The authors 

parameterized the SWAT model using a total of 31 sensitive 

input parameters (i.e. SCS runoff curve number for moisture 

condition II, base flow alpha factor, etc.) over 2255 sub-

basins (Fig. 1). A regionalization approach was applied to 

Table 2  General information of selected GCMs and scenarios available from PCIC

Acronym Country Resolution Scenario

CanESM2 Canada Canadian Centre for Climate Modeling and Analysis RCPs 2.6, 8.5

CCSM4 United States National Center for Atmospheric Research RCPs 2.6, 8.5

CNRM-CM5 France Centre National de Recherches Meteorologiques/Centre Europeen de Recherche et Forma-

tion Avancees en Calcul Scientifique

RCPs 2.6, 8.5

CSIRO-MK3.6.0 Australia Commonwealth Scientific and Industrial Research Organization in collaboration with the 

Queensland Climate Change Centre of Excellence

RCPs 2.6, 8.5

GFDL-ESM2G United States Geophysical Fluid Dynamics Laboratory RCPs 2.6, 8.5

HadGEM2 United Kingdom Met Office Hadley Centre (additional HadGEM2-ES runs by Instituto Nacional de Pesqui-

sas Espaciais)

RCPs 2.6, 8.5

MIROC5 Japan Meteorological Research Institute RCPs 2.6, 8.5

MPI-ESM-LR Germany Max Planck Institute for Meteorology RCPs 2.6, 8.5

MRI-CGCM3 Japan Meteorological Research Institute RCPs 2.6, 8.5

Table 3  The NARCCAP 

regional climate models used in 

this study

RCM Driving GCM Acronym for each model

CESM2 CCSM CGCM3 GFDL HadCM3

CRCM ✔ ✔ ✔ CRCM-CESM2

CRCM-CCSM

CRCM-CGCM3

ECP2 ✔ ECP2-GFDL

HRM3 ✔ ✔ HRM3-GFDL

HRM3-HadCM3

MM5I ✔ ✔ MM5I-CCSM

MM5I-HadCM3

RCM3 ✔ ✔ RCM3-CGCM3 RCM3-GFDL
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further differentiate the physical parameters based on hydro-

climatic conditions in 17 main river basins in Alberta. This 

resulted in a total of over 1000 physical parameters being 

altered throughout the study area by using a regionalized 

parameterization, calibration, and validation scheme (Fara-

marzi et al. 2015, 2017).

2.4  Model setup, experimental frameworks, 
and uncertainty decomposition

2.4.1  Model setup

We chose the 1983–2007 period as the reference (histori-

cal period) and selected 2010–2035 (near future, S1) and 

2040–2065 (far future, S2) periods for future analyses. We 

evaluated the projections of five hydro-climate variables 

namely precipitation, mean temperature, blue water avail-

ability (which is water yield plus deep aquifer recharge), 

green water storage (soil moisture), and green water flow 

or actual evapotranspiration (Falkenmark and Rockström 

2006). Under each climate model and RCP trajectory, we 

performed 1000 hydrologic model simulations with alter-

ing input parameters that resulted in 1000 projections for 

each hydro-climate variables. Further, we calculated three 

quantiles for each of the variables and used in decomposi-

tion analyses, representing high ( Q
97.5

 ), low ( Q
2.5

 ), and the 

median ( Q
50

 ) conditions in the HM-P and HM-R projections. 

Later, we used these quantiles and developed the ANOVA-

SUFI-2 method, to decompose the overall uncertainty into 

each driver’s share (see Sect. 2.4.2). To analyze the level of 

agreement or discrepancy among climate models and RCP 

trajectories, we used the coefficient of variation (CV) which 

expresses the degree of reliability in the projection of vari-

ables over time. Covering all possible future climate-impact 

projections based on the available input data, and proper 

implementation of the ANOVA-SUFI-2 method, we set up 

92 SWAT-CUP projects under two frameworks and three 

scenario-sets, which we describe in more details in the next 

section and in Supplemental Information, section SI.1.

2.4.2  Uncertainty evaluation and decomposition

We used a combination of analysis of variance method 

-ANOVA- (Deque et al. 2007; von Storch and Zwiers 1999; 

Yip et al. 2011) and SUFI-2 program for evaluation of different 

sources of uncertainty in the projected hydrological changes 

of Alberta. ANOVA is used to assess the contribution of dif-

ferent sources of uncertainty to the total predicted uncertainty 

of the projected variables. Using ANOVA, the variances in 

the projected changes are split into the original contributing 

sources and the interaction of different sources with each other. 

The interaction of different sources shows the share of uncer-

tainty sources that do not behave linearly. For instance, the 

snow melt parameters of the hydrologic model are affected by 

temperature projections of climate models, and could lead to 

nonlinear runoff responses (Bosshard et al. 2013). This can be 

quantified through an interaction component of the ANOVA 

decomposition approach. The SUFI-2 algorithm is used to map 

all ‘hydrologic’ model uncertainties (i.e. parameter, conceptual 

model, input data, model structure) on the hydrologic model 

parameter ranges, and captures the measured data within the 

95% prediction uncertainty range (95PPU) which is calculated 

at the 2.5% and 97.5% levels of the cumulative distribution of 

an output variable obtained through Latin Hypercube Sam-

pling (McKay et al. 1979, 2000). The combination of ANOVA 

and SUFI-2 methods thereby accounts for combined HM-P 

and HM-R in the decomposition of ensemble uncertainty 

in climate change projections. Overall, potential sources of 

uncertainty for our decomposition analysis were related to 

RCPs, GCMs, RCMs, BCDS, ET calculation methods, and 

HM-P and HM-R originated from the 92 experiments per-

formed under the two frameworks (Fig. 2). In framework-1, 

we used a three-factor ANOVA for uncertainty analysis of 

projected changes in blue and green water components due 

to different GCMs, RCPs, and BCDS. In framework-2, we 

implemented a two-factor ANOVA incorporating different 

RCMs, and potential evapotranspiration calculation methods. 

The cascade of uncertainty used in these two frameworks is 

presented in Fig. 2 (for those who are less familiar with the 

ANOVA approach, we recommend they first read the frame-

work 2 structure). In the framework-1, the total sum of square 

errors (SST) is defined as:

where, Xijk is the value of hydro-climate variable X (in this 

study differences of future and historical blue and green 

water components) corresponding to RCP i, GCM j, and 

BCDS k, respectively, and X̄
ooo

 is the overall mean. To inves-

tigate the contribution of HM-P and HM-R to the overall 

uncertainty, we used the 2.5, 50, and 97.5 quantiles out of 

1000 SWAT runs for the projected hydrological variables 

(blue and green water), which represent low, medium, and 

high conditions, respectively. We computed quantiles in each 

model time-series and then averaged over the ensemble. We 

adjusted the above formula in Eq. 2 by considering three 

quantiles ( Q2.5, Q50, Q97.5 ) of variable X derived from 1000 

simulations of the SWAT model at 95% confidence level.

where, QXijk  and QXooo are the three quantiles 

( Q2.5, Q50, Q97.5 ) of Xijk and X̄
ooo

 , respectively. In this study, 

(1)SST =

NRCP
∑

i=1

NGCM
∑

j=1

NBCSD
∑

k=1

(Xijk − X̄ooo)
2

(2)SST =

NRCP
∑

i=1

NGCM
∑

j=1

NBCSD
∑

k=1

(QXijk − QXooo)
2
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1000 SWAT runs were performed based on (1) the mini-

mum suggested number of SWAT runs in the literature for a 

proper uncertainty analysis (Abbaspour et al. 2015); (2) the 

number of sub-basins in SWAT model of Alberta, i.e. 2255 

(Faramarzi et al. 2015); and (3) the sensitive parameters in 

uncertainty analysis (31 variables regionalized for the 17 

river basins, see Table SI.2 in Supplemental Information 

for more details).

Based on the ANOVA theory, SST can be divided into 

the sum of squares of errors due to individual effects and 

their interactions:

(3)SST = SS
RCP

+ SS
GCM

+ SS
BCDS

+ SSI

(4)

SSI = SS
RCP∗GCM

+ SS
RCP∗BCDS

+ SS
GCM∗BCDS

+ SS
RCP∗GCM∗BCDS

(5)SSRCP = NGCMNBCDS

NRCP
∑

i=1

(QXioo − QXooo)
2

(6)SSGCM = NRCPNBCDS

NGCM
∑

j=1

(QXojo − QXooo)
2

where, N
RCP

 , N
GCM

 , and N
BCDS

 describe the number of 

RCPs, the number of GCMs and the number of bias cor-

rection statistical downscaling methods, respectively. The 

symbol “o” indicates averaging over a particular index.

In ANOVA, unequal population size of different uncer-

tainty sources (in our study: GCMs population size = 9, RCPs 

population size = 2 and BCDS population size = 2) may cause 

bias in the uncertainty decomposition results (Bosshard et al. 

2013). To avoid the bias caused by different population sizes 

of GCM sources, we followed the approach of Bosshard et al. 

(2013), sampling all the possible combinations of selecting 

two of nine GCMs 

((

9

2

)

= 36

)

 , two of two RCPs 
((

2

2

)

= 1

)

 , and two of two BCDS 

((

2

2

)

= 1

)

 . The sam-

(7)SSBCSD = NRCPNGCM

NBCDS
∑

k=1

(QXook − QXooo)
2

(8)

SSI =

NRCP
∑

i=1

NGCM
∑

j=1

NBCDS
∑

k=1

(QXijk − QXioo − QXojo − QXook + 2QXooo)
2

Fig. 2  Uncertainty cascade 

frameworks developed for the 

study purposes



 S. Ashraf Vaghefi et al.

1 3

pling procedure resulted in total of 36 possible sample sets 

( 36 × 1 × 1 = 36 ) for framework-1, each sample set included 

two RCPs, two GCMs, and two BCDS (a total of 2 × 2 × 2 = 

8 combinations). Next, we calculated all the terms of SST in 

Eq. 3 (i.e. Eqs. 5–8) for each of the 36 sample sets that resulted 

in a total of 36  SSRCP, 36  SSBCD, 36  SSGCM, and 36 SSI. Fur-

ther, we aggregated them to account for ‘unbiased variance 

fraction’ ( NSST
U

 ) by using Eq. 9 (Bosshard et al. 2013) to 

obtain the final  SSRCP,  SSBCDS,  SSGCM and SSI:

where, U indicates the uncertainty component, i.e. RCP, 

GCM, BCDS, and SSI. Therefore, a total of four variance 

fractions were calculated, including of NSS
RCP

 , NSS
GCM

 , 

NSS
BCDS

 , NSSI.

In order to study the uncertainty associated with the climate 

change, the systematic model bias in climate model projections 

has to be removed first. Two common approaches to omit such 

discrepancies are (1) using a Delta method (Kay et al. 2009) 

and force the historical simulations of GCMs to follow the 

historically observed climate, so that all historical simulations 

of GCMs would be identical, and (2) considering differences 

between historical and future simulations of the same mod-

eling chain, after the entire chain of models has been executed 

(i.e. subtract the result of the historical simulation from the 

result of the future simulation, and only consider the changes). 

In this study, the second approach which uses the differences 

between historical and future simulations of blue and green 

water instead of absolute values of future simulations, consid-

ered to be more suitable, since it allows for more flexibility in 

bias-correction.

Likewise, in the framework-2, the total sum of squares 

( SST ) is defined as:

where QYij and QYoo are three quantiles ( Q2.5, Q50, Q97.5 ) of 

Yij and Ȳ
oo

 respectively, and Yij is the value of hydro-climate 

variable Y corresponding to RCM i, and potential evapo-

transpiration calculation method j. Ȳ
oo

 is the overall mean.

SST is split into the sum of squares due to individual effects 

and their interactions:

(9)NSS
U
=

1

36

36
∑

m=1

SS
U,m

SST

(10)SST =

NRCM
∑

i=1

NET
∑

j=1

(QYij − QYoo)
2

(11)SST = SS
RCM

+ SS
ET

+ SSI

(12)SSI = SS
RCM∗ET

(13)SSRCM = NET

NRCM
∑

i=1

(QY io − QYoo)
2

where, N
RCM

 , and N
ET

 describe the number of RCMs, and 

the number of ET calculation methods respectively. The 

symbol “o” indicates averaging over a particular index.

For framework-2 a total of ten RCMs and two ET calcula-

tion methods were sampled based on the Bosshard et al. 

(2013) approach. Therefore, all possible combination of two 

of ten RCMs 

((

10

2

)

= 45

)

 , and two of two ET 
((

2

2

)

= 1

)

 methods were covered. For framework-2, each 

sample set included two RCMs, two ETs methods (a total of 

4 combinations). Thus, we attained a total of 45 subsamples. 

After calculation of all the terms of SST in Eq. 11 for all 45 

samples, the unbiased variance fraction related to different 

components were quantified as:

where, U indicates the uncertainty component, i.e. RCM, 

ET calculation methods, and SSI. Therefore, a total of three 

variance fractions were calculated, including of NSS
RCM

 , 

NSS
BET

 , NSSI.

For the framework-2, we implemented the ANOVA-

SUFI-2 analysis on both absolute values of future simula-

tions of ten RCMs, and differences of future and historical 

simulations of seven RCMs (i.e., using median, upper, and 

lower bound quantiles of projected precipitation and tem-

perature from ensemble of RCMs). We presented results of 

the first implementation in Sect. 3.2, and illustrated results 

of the second implementation in the Supplemental Informa-

tion (Figure SI.5).

As mentioned in earlier sections, we setup 92 SWAT-

CUP project experiments based on the uncertainty analysis 

frameworks and different uncertainty sources considered 

in this study (Fig. 2; Table 4). To present the analyses, we 

categorized all 92 possible model experiments into three 

scenario-sets, as demonstrated in Table 5. After running all 

scenarios, we implemented the ANOVA analysis for each 

framework and scenario-set to calculate the share of dif-

ferent sources of uncertainty for changes in blue and green 

water components.

To prepare each of the 92 SWAT-CUP projects and con-

duct the experiments, we provide a step-wise guideline, 

(14)SSET = NRCM

NET
∑

j=1

(QYoj − QYoo)
2

(15)SSI =

NRCM
∑

i=1

NET
∑

j=1

(QYij − QXio − QYoj + QYoo)
2

(16)NSS
U
=

1

45

45
∑

m=1

SS
U,m

SST
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which can be used as a protocol in any climate change study 

using the SWAT model (see Supplemental Information, 

section SI.2 for the protocol of climate change study with 

SWAT).

3  Results and discussion

3.1  Hydro‑climatic impacts

For the sake of brevity, we only report the results of our 

analyses at the 50% quantile level, in Sect. 3.1.1–3.1.4 

(Figs. 3, 4, 5, 6, 7). We present ensemble results of BCDS 

for nine GCMs and two RCPs, and ensemble results of ten 

RCMs for two ET calculation methods. To avoid inconsist-

ency in the results, we eliminated the two extreme outliers 

of each scenario set in the results of CVs and SDs. To better 

interpret the impacts of climate change on water resources 

under different scenarios, we compared the results of future 

with historical simulations in Sect. 3.1.1 to 3.15. Table SI.3 

summarizes the statistics of spatial variation of projected 

changes and CVs of precipitation, average temperature, blue 

water, and green water resources (see Supplemental Infor-

mation). The decomposition of uncertainty is performed 

using all three quantiles and the results are presented in 

Sects. 3.2 and 3.3.

3.1.1  Precipitation trends

Figure 3 shows the historical long-term average annual pre-

cipitation obtained through previous studies of Alberta (Far-

amarzi et al. 2015, 2017), and projected differences between 

future and historical precipitation scenarios. The historical 

distribution of annual precipitation (Fig. 3a) ranges from 

280 mm  year−1 in the southeast to 750 mm  year−1 in the 

Rocky Mountains (see Figure SI.2 in Supplemental Informa-

tion for seasonal distribution precipitation across Alberta). 

The median of the results from an ensemble of 9 down-

scaled GCM-RCP runs for the 2010–2035 horizon (Fig. 3b, 

d) showed that most of the study area will experience a likely 

increase of 0 to 5% in precipitation (i.e. 0 to 50 mm  year−1) 

with an average of 16 and 10 mm  year−1 across the prov-

ince under RCP2.6 and 8.5 scenarios, respectively (Table 

SI.3). The results (Fig. 3c, e) showed relatively larger rise 

for the 2040–2065 (GCMs-RCP2.6-D-S2 and GCMs-RCP 

8.5-D-S2) period as compared to the 2010–2035 period, 

with a likely increase of 5–20% (i.e. 20 to 60 mm  year−1). 

Meanwhile, the province’s average increase of 32 and 36 mm 

 year−1 under RCP2.6 and 8.5 was projected, respectively 

(Table SI.3). Figure 3f presents projected changes in pre-

cipitation for 2040–2065 horizon using the median of the 

results from an ensemble of ten RCM runs. The magnitude 

of the changes strongly increased from GCMs to RCMs with 

more increases in the western part of the province. The long-

term average annual precipitation changes over the province 

showed a likely increase of 117 mm  year−1 (Table SI.3). 

The RCMs projections of 15–20% increases for precipita-

tion agree with the previous studies (Erler and Peltier 2017; 

Jeong et al. 2014; Mearns et al. 2013). Figure 3g–k show 

the coefficient of variations (CVs) of the climate model 

Table 4  Climate–Impact 

scenarios used in this study
Scenarios Description Acronym

Historical, 1983–2007 Historical

Sc 1–9 9 GCMs, RCP 2.6, downscaled, 2010–2035 GCM-RCP 2.6-D-S1

Sc 10–18 9 GCMs, RCP 2.6, downscaled, 2040–2065 GCM-RCP 2.6-D-S2

Sc 19–27 9 GCMs, RCP 2.6, not downscaled, 2010–2035 GCM-RCP 2.6-ND-S1

Sc 28–36 9 GCMs, RCP 2.6, not downscaled, 2040–2065 GCM-RCP 2.6-ND-S2

Sc 37–45 9 GCMs, RCP 8.5, downscaled, 2010–2035 GCM-RCP 8.5-D-S1

Sc 46–54 9 GCMs, RCP 8.5, downscaled, 2040–2065 GCM-RCP 8.5-D-S2

Sc 55–63 9 GCMs, RCP 8.5, not downscaled, 2010–2035 GCM-RCP 8.5-ND-S1

Sc 64–72 9 GCMs, RCP 8.5, not downscaled, 2040–2065 GCM-RCP 8.5-ND-S2

Sc 73–82 10 RCMs, 2040–2065, Hargreaves RCM-Har-D-S2

Sc 83–92 10 RCMs, 2040–2065, Penman–Monteith RCM-Pen-D-S2

Table 5  Frameworks and scenario combinations used for assessment 

of uncertainty cascade

Scenarios Scenario-set

GCMs-RCP 2.6-D-S1 Scenario-set1 (GCMs-2010-2035)

GCMs-RCP 2.6-ND-S1

GCMs-RCP 8.5-D-S1

GCMs-RCP 8.5-ND-S1

GCMs-RCP 2.6-D-S2 Scenario-set2 (GCMs-2040-2065)

GCMs-RCP 2.6-ND-S2

GCMs-RCP 8.5-D-S2

GCMs-RCP 8.5-ND-S2

RCMs-Har-D-S2 Scenario-set3 (RCMs-2040-2065)

RCMs-Pen-D-S2
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predictions. The smaller the CV, the less model-to-model 

variability of precipitation and more reliable are the predic-

tions. A provincial average CV of 7.4% under RCP 2.6 and 

8.5 indicated the same magnitude of consistency between 

models in projection of precipitation under the 2040–2065 

future scenarios (Fig. 3h, j) as compared to the 2010–2035 

scenarios (Fig. 3g, i), where a slightly larger average CV of 

9% and 8% were found for RCP 2.6 and 8.5, respectively. 

For the 2040–2065 period, most of Alberta has small CVs of 

up to 10% (Fig. 3h, j), except the southeast region (Fig. 3j), 

where CVs of up to 20% were found for the 8.5 scenario. 

Our analysis showed an increase of up to 63% in precipi-

tation under RCM scenarios with an average CV of 31% 

across the province. Stronger changes for precipitation in 

NARCCAP data compared to GCMs have been reported by 

other researchers as well (e.g. Erler and Peltier 2017; Mearns 

et al. 2013). A likely reason for higher agreement between 

historical and future data in GCM precipitation compared 

to RCM results of NARCCAP is the further bias-correction, 

which we applied to the GCM data (Laflamme et al. 2016). 

Furthermore, the RCM simulations may also present biases 

due to regional physical processes involved in these simula-

tions, intensifying those from the driving GCM leading to a 

large combined error and disagreement among models (Fan 

et al. 2015; Gao et al. 2016).

3.1.2  Temperature trends

Figure 4 shows the spatial distribution of the long-term aver-

age annual temperature, i.e. mean temperature, for the refer-

ence period (1983–2007) and the differences between histori-

cal and future scenarios (2010–2035 and 2040–2065). In the 

Fig. 3  Spatial distribution of annual precipitation for historical period 

(1983–2007) (a), its changes (Changes = [[future values − historical 

values]/historical values] × 100) between near future (2010–2035) 

and historical period (b, d), and between far future (2040–2065) and 

historical period (c, e) calculated using ensemble of GCMs-bias cor-

rected data under RCP 2.6 and RCP 8.5 scenarios, respectively. f The 

spatial distribution of changes between 2040 and 2065 and historical 

period calculated using the ensemble of RCMs. The coefficient of 

variation, indicating inter-model variation, for the near future (g, i), 

far future (h, j) under the RCP 2.6 and RCP 8.5 scenarios, respec-

tively. k The coefficient of variation for RCM models projections
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near future, average increases of 1.35 °C under RCP 2.6 and 

1.4 °C under RCP 8.5 were found for the province as a whole, 

while increases of up to 1.7 and 1.8 °C were found in vari-

ous regions under RCP2.6 and 8.5, respectively (Fig. 4b, d). 

Furthermore, projections showed that some parts of Alberta 

will experience a warmer temperature of up to 3.8 °C in the 

far future (Fig. 4c, e) as compared to the near future. Overall, 

the far future increases are significantly higher under RCP8.5 

(3 °C) compared to RCP2.6 (1.7 °C) across Alberta. The 

ensemble results of RCMs showed that the changes in mean 

temperature relative to the historical period vary between 

0 °C in northwest and 2 °C in the Rocky Mountains, with 

an average increase of 1.7 °C and standard deviation (SD) 

of 1.3 °C across the province. Overall, our results showed a 

significantly higher spatial variation in RCMs as compared to 

GCMs for the reasons we mentioned in the earlier section and 

also the likely inconsistency in the physical representation of 

the climate system between RCMs and GCMs (Fernández 

et al. 2018; Roop et al. 2015). The long-term average SD of 

mean annual temperature for near future showed a slightly 

larger inter model disagreement (of up to 0.5 °C) in RCP 2.6 

compared to 8.5 (of up to 0.4 °C) scenarios (Fig. 4g, i). Over-

all, the far future scenario results showed a low (0.3–0.5 °C) 

to moderate (0.5–1 °C) SD for the RCPs and GCMs in pro-

jection of mean temperature (Fig. 4h, j). Figure 4k displays 

disagreement (with an average of 2.36 °C) among RCMs for 

all sub-basins in the province. The large differences between 

individual NARCCAP RCM projections have also been pre-

viously reported (e.g. Jiang et al. 2016; Salazar et al. 2016).

3.1.3  Blue water

Figure 5 shows the spatial distribution of the annual blue 

water resources for the historical period (1983–2007) and 

Fig. 4  Spatial distribution of annual mean temperature for histori-

cal period (1983–2007) (a), its changes (Changes = [[future values 

− historical values]/historical values] × 100) between near future 

(2010–2035) and historical period (b, d), and between far future 

(2040–2065) and historical period (c, e) calculated using ensemble 

of GCMs-bias corrected data under RCP 2.6 and RCP 8.5 scenarios, 

respectively. f The spatial distribution of changes between 2040 and 

2065 and historical period calculated using ensemble of RCMs. The 

coefficient of variation, indicating inter-model variation, for the near 

future (g, i), far future (h, j) under the RCP 2.6 and RCP 8.5 scenar-

ios, respectively. k The coefficient of variation for RCM models pro-

jections
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the changes in future scenarios (2010–2035 and 2040–2065). 

Historically, the annual blue water varied spatially from 10 

to 561 mm, with highest values in the west and southwest 

and the lowest in the grasslands in the southeast of the prov-

ince (Fig. 5a). Generally, the blue water was projected to 

increase in the north and north-west of the province in all 

GCMs by up to 100 mm (Fig. 5b–d). Blue water decreased 

in some sub-basins in the west, south, and central parts of 

the province, with an average of − 20, − 28, and − 27 mm 

 year−1 in RCP 2.6-D-S1, RCP 2.6-D-S2, and RCP 8.5-D-S1, 

respectively (Fig. 5b–d). Blue water increased in RCP 8.5-

D-S2 in most sub-basins with an average amount of 46 mm 

which is consistent with the precipitation increase in this 

scenario-set (Fig. 5e). Our results indicated that the blue 

water availability differs significantly in response to RCMs 

as compared to the GCMs; although there is a similar spatial 

pattern in both GCMs and RCMs. The magnitude of increase 

is much higher for RCMs scenarios, where for some western 

sub-basin an increase of up to 350 mm is seen (Fig. 5f, g) 

due to increasing precipitation in the RCMs (Fig. 3). The CV 

of GCMs (Fig. 5h–k) indicated larger agreement (0–50%) 

between GCMs. Slightly higher CV was found in far future 

scenarios (Fig. 5i, k) in comparison to the near future sce-

narios (Fig. 5h, j). In RCM model-scenarios higher discrep-

ancy among RCMs was found for most of the province, espe-

cially in east and southeast regions (Fig. 5l, m). This is likely 

due to the bias associated with higher resolution processes 

represented by RCMs compared to GCMs and the amplified 

error of RCMs from the driving GCM.

3.1.4  Green water

The SWAT simulation results show a wide range of green 

water flow (GWF) between 107 mm in the western part and 

500 mm in the agricultural lands in the southern part of the 

province (Fig. 6a) for the historical period. Projected future 

changes in GWF indicated a likely increase of between 1 and 

100 mm for GCMs-RCP 2.6-D-S1, GCMs-RCP 2.6-D-S2, 

and GCMs-RCP 8.5-D-S1 scenarios. The projected increases 

(Fig. 6b–d) in most of the central sub-basins are consistent 

Fig. 5  Spatial distribution of annual blue water for historical period 

(1983–2007) (a), its changes (Changes = [[future values − historical 

values]/historical values] × 100) between near future (2010–2035) 

and historical period (b, d), and between far future (2040–2065) and 

historical period (c, e) calculated using ensemble of GCMs-bias cor-

rected data under RCP 2.6 and RCP 8.5 scenarios, respectively. f, g 

The spatial distribution of changes between 2040 and 2065 and his-

torical period calculated using ensemble of RCMs using Hargreaves 

and Penman Monteith evapotranspiration calculation methods respec-

tively. The coefficient of variation, indicating inter-model variation, 

for the near future (h, j), far future (i, k) under the RCP 2.6 and RCP 

8.5 scenarios, respectively. l, m The coefficient of variation for RCM 

models projections using Hargreaves and Penman–Monteith evapo-

transpiration calculation methods respectively
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with the projected decreases in blue water (Fig. 5b–d). Green 

water flow increases due to warmer conditions, especially in 

agricultural regions. This limits the available water that can 

contribute to blue water. The ensemble results of GCMs-

RCP 8.5-D-S2 show a probable decrease for most sub-basins 

in the province, except those located in the southeast part 

of Alberta (Fig. 6e). Projected rising temperature with an 

average of 3 °C in GCMs-RCP 8.5-D-S2 scenarios is the 

main reason for increased GWF for most parts of the prov-

ince. In RCM-Har-D-S2 and RCM-Pen-D-S2 scenarios, 

likely increases of up to 150 mm and 210 mm are projected 

for the southeast and mountainous regions of the province, 

respectively (Fig. 6f, g). The magnitude of spatial varia-

tion of GWF differed significantly from GCMs (with SD of 

28–30 mm) to RCMs (with SD of 86–116 mm). The results 

of GCM CV showed that disagreement among the GCMs 

is seen in the west, south, and southeast of the province 

(Fig. 6h–j). Similar to other hydrologic components from 

RCMs, both RCM-Har-D-S2 and RCM-Pen-D-S2 scenarios 

showed higher variation (2–3 times more) between RCM 

models (Fig. 6l, m).

Figure 7 shows the spatial distribution of the annual avail-

able green water storage (GWS) for the historical period 

and the changes in the future (S1 and S2). Historically, 

the annual GWS varies from 0 mm in the southeast part of 

the province up to more than 600 mm in the northwest of 

Alberta. However, there are some sub-basins in the province 

with historical GWS beyond 600 mm (Fig. 7a). Areas with 

larger GWS and smaller coefficient of variation have a higher 

potential for development of rainfed (green) agriculture. Our 

GWS projections for the near future showed likely increases 

in most of the southern sub-basins, and potential decreases 

in some northern sub-basins for RCP2.6-D-S1, RCP2.6-D-

S2, and RCP8.5-D-S1 (Fig. 7b–d). In RCP8.5-D-S2, results 

showed an average increase of 23 mm (Table SI.3) for most 

of the sub-basins in the province (Fig. 7e). These overall 

increases in GWS are consistent with the increases in pre-

cipitation and blue water (Figs. 3e, 5e) and the decrease 

Fig. 6  Spatial distribution of annual green water flow for histori-

cal period (1983–2007) (a), its changes (Changes = [[future values 

− historical values]/historical values] × 100) between the near future 

(2010–2035) and historical period (b, d), and between far future 

(2040–2065) and historical period (c, e) calculated using ensem-

ble of GCMs-bias corrected data under RCP 2.6 and RCP 8.5 sce-

narios, respectively. f, g The spatial distribution of changes between 

2040 and 2065 and historical period calculated using an ensemble 

of RCMs using Hargreaves and Penman–Monteith evapotranspira-

tion calculation methods respectively. The coefficient of variation, 

indicating inter-model variation, for the near future (h, j), far future 

(i, k) under the RCP 2.6 and RCP 8.5 scenarios, respectively. l, m 

The coefficient of variation for RCM models projections using Har-

greaves and Penman–Monteith evapotranspiration calculation meth-

ods respectively
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in green water flow (Fig. 6e). In both RCM-Har-D-S2 and 

RCM-Pen-D-S2 scenarios, results indicated a likely increase 

of 100–160 mm for the southern sub-basins and a probable 

decrease of 5–60 mm for most of the northern and western 

sub-basins. Although the spatial distribution of projected 

changes in GWS were close in both RCM-Har-D-S2 and 

RCM-Pen-D-S2, the former predicted slightly more decrease 

in GWS compared to the latter (Fig. 6f, g). Figure 7h–m 

present the analysis of CVs related to GWS. Similar to other 

hydro-climatic variables, the CV between GCMs (Fig. 7h–k) 

were smaller than CV between RCMs (Fig. 7l, m). This find-

ing is in line with our other results. Overall, smaller CV was 

found in the GCMs-RCPs scenarios in the northern part of 

the province and larger CV was obtained in southern areas.

3.2  Seasonal analysis of blue and green water

We aggregated the simulated monthly blue and green water 

components from sub-basin scale to the provincial level to 

assess the seasonal differences between three scenario-sets. 

For the sake of brevity, the results for framework-1, scenario-

set1 are provided in Supplemental Information (Figures SI.3 

and SI.4). Figure 8a, b present future projections of monthly 

blue water compared to the baseline at three quantile levels 

for framework-1, scenario-set2 and framework-2, scenario-

set3 as defined in Table 5. Since the results are based on 

the median of ensemble of models, they do not reflect the 

uncertainty of individual climate models. In these graphs 

uncertainty range is calculated based on the differences 

between the quantities depicted by various lines (solid, dash, 

and dash-dot) and colors (black, red, blue, green) explained 

in the figure legends.

In general, the results (Fig. 8a) showed large differ-

ences between 2.5, 50 and 97.5 quantiles of blue water 

due to model parameter uncertainty. The comparison of 

blue water calculated from historical simulations of GCMs 

(yellow lines) and those simulated using the observed his-

torical climate data (black lines) showed a similar pattern 

at the Q2.5 , Q50 , and Q97.5 levels with slight underestimation 

in historical GCMs simulations from April to September. 

Fig. 7  Spatial distribution of annual green water storage for histori-

cal period (1983–2007) (a), its changes (Changes = [[future values 

− historical values]/historical values]×100) between near future 

(2010–2035) and historical period (b, d), and between far future 

(2040–2065) and historical period (c, e) calculated using ensem-

ble of GCMs-bias corrected data under RCP 2.6 and RCP 8.5 sce-

narios, respectively. f, g The spatial distribution of changes between 

2040 and 2065 and historical period calculated using an ensemble 

of RCMs using Hargreaves and Penman–Monteith evapotranspira-

tion calculation methods respectively. The coefficient of variation, 

indicating inter-model variation, for the near future (h, j), far future 

(i, k) under the RCP 2.6 and RCP 8.5 scenarios, respectively. l, m 

The coefficient of variation for RCM models projections using Har-

greaves and Penman–Monteith evapotranspiration calculation meth-

ods respectively
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The projected results of blue water for the framework-1, 

scenario-set2, i.e. GCMs-RCP(2.6/8.5)-(D/ND)-S2, 

showed increases in February and March, and decreases 

from April to September at the Q
97.5

 and Q
50

 levels as com-

pared to the historical values (except RCP 8.5-ND-S2 at 

the level of 50th percentile). The blue water results at Q
2.5

 

level showed increases from October to April, while they 

remained stable from May to September. In framework-1, 

scenario-set2, most fluctuations are seen in April, where 

for instance the uncertainty range due to HM-P and HM-R 

Fig. 8  Long-term monthly blue water under framework 1 (a), sce-

nario-set2; and framework 2, scenario-set3 (b) as defined in Table 5. 

Solid lines represent the blue water values at 50th percentile, dashed 

lines represent the blue water values at 2.5th percentile, dashed-dot-

ted lines represent the green water flow values at 97.5th percentile. 

Black lines represent historical observed scenarios. In a red lines 

represent RCP2.6 downscaled scenarios, blue line represent original 

RCP2.6 simulations without further bias correction at local scale, 

Green lines represent RCP8.5 downscaled scenarios, pink lines rep-

resent original RCP8.5 simulations without further bias correction 

at local scale, and Yellow lines represent the historical simulation of 

GCMs. In b black lines represent historical observed scenarios, red 

lines represent RCMs simulations using Hargreaves evapotranspira-

tion calculation method, blue lines represent RCMs simulations using 

Penman–Monteith evapotranspiration calculation method, and green 

lines represent RCMs historical simulations (ensemble of seven sets 

of RCMs and using Hargreaves method)
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varies between 2.5 and 28 mm in historical scenarios (dif-

ferences between dot-black and dash-dot-black lines). For 

the framework-2 scenario-set3 (Fig. 8b), the future simu-

lated blue water using the RCMs was projected to increase 

as compared to that of using observed climate data in all 

months except April at the Q50level. However, it was pro-

jected to be stable at the Q97.5 level in all months, except 

April and May where fluctuations are significant. Compar-

ison of the simulated blue water using RCM data for both 

future and historical periods (only plotted for ensemble 

of seven available RCMs out of ten green lines), showed 

a decreasing pattern for blue water resources. Neverthe-

less, the large uncertainty inherent in RCMs projections 

for western Canada, especially for precipitation (Mearns 

et al. 2012), necessitates removal of the RCM error before 

using them in regional climate-impact studies.

We investigated seasonal variability of green water flow 

across Alberta for the historical period and future scenar-

ios and demonstrated our results in Fig. 9a, b and Figure 

SI.4. The long-term monthly averages of green water flow 

in framework-1 scenario-set2 showed that the uncertainty 

due to HM-P and HM-R is dominant from April to Sep-

tember as compared to the uncertainty due to the selection 

of different RCPs and BCDS. For instance, in July the 

uncertainty associated with HM-P and HM-R for future 

scenario ranges from 23.5 to 29.5 mm for framework-1 

scenario-set2, while uncertainty range due to the selection 

of RCPs and BSDS is 1–3 mm and 2–4 mm, respectively 

(Fig. 9a). The share of RCPs and BCDS sources on the 

overall uncertainty band of green water flow is dominant 

in June and August (Fig. 9a). The comparison of green 

water simulated based on historical GCMs data with that 

of simulated using observed records showed an overall 

agreement in Fig. 9a and Figure SI. 4. In the framework-2 

scenario-set3, the uncertainty range of green water flow 

due to HM-P and HM-R sources is 0.5–28 mm for Q
97.5

 , 

(with the minimum range in January and the maximum 

range in July) while this range for selection of ET meth-

ods is 2–7 mm, with the maximum value projected for the 

month of June for Q
97.5

 values (Fig. 9b). From November 

to March, the uncertainty caused by model parameter is 

similar to the uncertainty caused by selection of RCPs 

and BCDS methods. This is supported by small distances 

between future projections (Fig. 9b). Results showed an 

increase in future green water as compared to the simu-

lation using observed data. To justify the magnitude of 

increase in green water, we plotted the green water results 

of historical simulations of RCMs (only plotted for ensem-

ble of seven available RCMs out of ten green lines) and 

compared with the green water results of observed simula-

tion. The results showed a general overestimation of green 

water in historical RCMs compared to the observed simu-

lation (Fig. 9b).

3.3  Evaluation of the sources of uncertainty

We analyzed the seasonal uncertainty decomposition 

of blue and green water components (Figs. 10, 11). Fig-

ure 10a–c indicate that the hydrological model parameters 

(including both HM-P and HM-R) are the dominant source 

of uncertainty for blue water from April to September in 

all frameworks and scenario-sets (see Tables 6, 7 for more 

details). Our uncertainty decomposition results revealed 

that the contributions of HM-P and HM-R to the overall 

uncertainty were from 11% in February to 41% in April 

in framework-1 scenario-set1, i.e. GCMs-RCPs (2.6/8.5)-

(D/ND)-S1 (Fig. 10a). The results showed that in frame-

work-1 scenario-set2, i.e. GCMs-RCPs (2.6/8.5)-(D/ND)-

S2, the share of HM-P and HM-R uncertainty were from 

15% (February) to 33% (April) in overall uncertainty. In 

the framework-2, scenario-set3, i.e. RCMs-D-S2, the HM-P, 

and HM-R contributed between 35% (December) to 48% 

(April) to the overall uncertainty. The contribution of the 

hydro-climatic nonlinearity behavior, demonstrated by the 

interaction term, i.e. Equation 8 and Eq. 15; to the overall 

uncertainty of blue water varied between 6–14 and 7–14% 

throughout the year for scenario-set1 and scenario-set2, 

respectively (Fig. 10a, b). For the combination of RCMs-

ET methods (framework-2 scenario-set3), the interaction 

term was up to 4% for all months. It is noteworthy that we 

performed two independent ANOVA-SUFI-2 analysis using 

(1) absolute values of future simulations (ten sets of RCMs; 

Fig. 10c), and (2) differences of future and historical simula-

tions (seven sets of RCMs; Figure SI.5A) of blue water in 

the RCMs framework. Only seven historical simulations of 

RCMs were available at the time running the scenarios. The 

results of uncertainty decomposition using the absolute val-

ues revealed that RCMs contribute 51.1% to the total uncer-

tainty on the average (see Table 6 Farmework-2 Scenarios-

set3). However, this value represents a combined error due 

to model bias in simulation of historical climate, and that of 

climate change signal. In the second approach, we applied 

the ANOVA-SUFI-2 on the changes of future and histori-

cal simulations of ensemble of seven RCMs. The results 

showed a decrease in contribution of the RCMs to 36.67% 

(see Table 6 Farmework-2 Scenarios-set3, numbers reported 

in brackets), which is more reasonable and consistent with 

the GCMs results (Table 6 Farmewirk-1 Scenarios-set1 and 

Farmework-1 Scenarios-set2).

Figure 11a–c showed that the climate models (i.e. GCMs 

and RCMs), and the HM-P and HM-R were the main con-

tributors to the overall uncertainty of green water flow pro-

jections. We found that from April (32% in framework1-sce-

nario set1 and 36% in framework1-scenario set2) to August 

(38% in framework1-scenario set1 and 35% in framework1-

scenario set2), the HM-P and HM-R were dominant sources 

of uncertainty in scenario-set1 and scenario-set2 (Fig. 11a, 
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b), followed by uncertainty associated with GCMs in these 

scenarios (18–30% in scenario-set1 and 25–31% in scenario-

set2). In scenario-set1 and scenario-set2, the contribution 

of both GCMs and hydrological model parameters in the 

overall uncertainty were similar from October to March. 

From October to March, the contribution of HM-P and 

HM-R decreased in scenario-set1 (Fig. 11a), while the 

share of RCPs and BCDS increased for the same scenarios 

(Fig. 11b). In the framework-2, scenario-set3, RCMs had 

the most influence (40%), followed by the HM-P and HM-R 

Fig. 9  Long-term monthly green water flow (i.e. actual evapotranspi-

ration) under framework 1, scenario-set2 (a); and framework 2, sce-

nario-set3 (b) as defined in Table  5. Solid lines represent the green 

water flow values at 50th percentile, dashed lines represent the green 

water flow values at 2.5th percentile, and dashed-dotted lines repre-

sent the green water flow values at 97.5th percentile. Black lines rep-

resent historical observed scenarios. In a red lines represent RCP2.6 

downscaled scenarios, blue line represent original RCP2.6 simula-

tions without further bias correction at local scale, green lines rep-

resent RCP8.5 downscaled scenarios, pink lines represent original 

RCP8.5 simulations without further bias correction at local scale, 

and yellow lines represent the historical simulation of GCMs. In b 

black lines represent historical observed scenarios, red lines represent 

RCMs simulations using Hargreaves evapotranspiration calculation 

method, blue lines represent RCMs simulations using Penman–Mon-

teith evapotranspiration calculation method, and green lines represent 

RCMs historical simulations (ensemble of seven sets of RCMs and 

using Hargreaves method)
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(26%), and the ET calculation methods (22.3%) as the uncer-

tainty sources (Table 6; Fig. 11c).

The interaction term contribution to the overall uncer-

tainty of green water flow varied between 6–13% and 8–14% 

throughout the year for scenario-set1 and scenario-set2, 

respectively (Fig. 11a, b). For scenario-set3 of the RCMs-

ET methods, the interaction term contributed 5–16% to the 

overall uncertainty (Fig. 11c). Similar to blue water, we pre-

formed two independent ANOVA-SUFI-2 analyses on green 

water flow in the framework-2-scenario-set3 using (1) abso-

lute values for ten RCMs (Fig. 11c), and (2) differences of 

historical and future simulations, i.e. delta values, for seven 

RCMs (Figure SI.5 B). Comparison of the results indicated 

that share of uncertainty contributed from RCMs decreased 

by using delta instead of absolute values. This was simi-

lar to our findings in decomposition analysis of blue water 

availability, and resulted in an increase in contribution of 

other sources in the overall uncertainty cascade (see Table 6 

Farmewirk-2 Scenarios-set3).

We summarized the results of uncertainty decomposi-

tion in Tables 6 and 7. In general, the dominant sources of 

uncertainty in framework-1 scenario-set1 and scenario-set2 

were hydrological model parameters followed by GCMs. In 

framework-2 scenario-set3, the main sources of uncertainty 

were associated with RCMs followed by hydrological model 

parameters. Uncertainty assessment of blue water showed 

that the share of HM-R and HM-P varies between 13%-40% 

in the overall cascade of uncertainty while for green water 

flow HM-R and HM-P contribute between 11%-41% in dif-

ferent months (Table 7). Our results showed that RCPs and 

BCDS have similar quantity of contribution in the overall 

cascade of uncertainty, and the interaction source has the 

minimum share compared to other sources in framework-1 

scenario-set1 and framework-1 scenario-set2.. In frame-

work-2 scenario-set3, RCMs source was the dominant share, 

followed by HM-R and HM-P, ET methods and interaction 

sources.

3.4  Caveats

The approach and the frameworks developed in this study 

provide novel basis to examine contribution of the hydrolog-

ical model parameterization and regionalization in the full 

cascade of uncertainty. However, similar to other studies, 

our work might have some limitations. For instance, we did 

not consider various methods of bias correction and down-

scaling (i.e., BCCA, quantile regression, etc.) in the design 

of our two frameworks. In addition, we only chose SWAT 

model, as one of the widely used hydrologic models to study 

the effects of HM-P and HM-R in the overall cascades of 

uncertainty. Further research is needed to assess the share 

of other hydrologic models such as VIC, HBV, WasSIM-

ETH, etc. in the entire cascade of uncertainty. Moreover, in 

the RCMs framework, we used the absolute values of future 

simulations of ten RCM for the ANOVA analysis. Although 

this approach has incidences in literature (Vetter et al. 2017), 

it may lead to error in uncertainty decomposition of frame-

work-2, since it reflects a mixed share of model bias (i.e. 

simulation during historical period), and error in projection 

of climate change response. To address this we applied the 

ANOVA-SUFI-2 on the differences of future and historical 

simulations of RCMs (similar to the GCMs framework) only 

for seven sets out of ten RCMs, where data were available at 

the time of scenario analysis. In doing so, the magnitude of 

model error in RCMs framework was eliminated from the 

uncertainty decomposition results.

4  Summary and conclusions

The goal of this study was to quantify the contribution of 

hydrological model parameterization and regionalization 

along with other drivers in the overall cascade of uncer-

tainty in climate change impact projections. We developed 

a new coupled ANOVA-SUFI-2 approach for decomposi-

tion analysis of ancertainty associated with the impact 

of climate change on hydro-climatic variables. We used 

a previously calibrated SWAT model of Alberta, which 

has been parameterized and regionalized over 2255 sub-

basins in Alberta. We analyzed different hydro-climatic 

variables including precipitation, mean temperature, blue 

water, green water flow, and green water storage using an 

ensemble of nine GCMs, two RCPs, two BCDS methods, 

ten sets of RCMs, and two evapotranspiration calcula-

tion methods resulting in a total of 92 individual climate-

impact SWAT models. We compared our projected results 

between future scenarios (2010–2035 and 2040–2065) 

and the historical period 1983–2007. We evaluated the 

projected changes of hydro-climatic variables at three 

quintile levels, i.e. 2.5%, 50%, and 97.5%. We catego-

rized our 92 models in three scenario-sets under two 

frameworks to determine the share of different uncer-

tainty sources in the overall uncertainty in the projection 

of blue and green water resources. The ANOVA-SUFI-2 

coupled approach, allowed quantification of uncertainty 

resulting from hydrologic model parameterization and 

Fig. 10  Variance decomposition of the uncertainty in blue water for 

Alberta under three sets of scenarios: Framework-1 scenario-set1 (a), 

framework-1 scenario-set2 (b), and framework-2 scenario-set3 (c). 

The uncertainty sources are GCMS, RCPs, BCDS, HM-P and HM-R, 

RCMs, and ET calculation methods. The differences of future and 

historical simulations of blue water (ensemble of nine sets of GCMs) 

were used for the uncertainty decomposition of GCMs framework (a, 

b). The absolute values of future simulations of blue water (ensem-

ble of ten sets of RCMs) used for the uncertainty decomposition of 

RCMs framework (c)

◂
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regionalization, along with other sources including cli-

mate models, greenhouse gas emission scenarios, bias 

correction and downscaling methods, evapotranspiration 

calculation methods, and their interactions.

We acknowledge other similar studies that quantified 

different sources of uncertainty in the impact assessments 

(Hattermann et al. 2017). However, in the vast majority of 

earlier studies, the share of uncertainty caused by HM-P and 

HM-R is not quantified in future impact assessments. The 

novelty of our ANOVA-SUFI-2 approach is its capability to 

analyze HM-P and HM-R while assessing other sources in 

the uncertainty cascade.

Using ANOVA-SUFI-2 method we found that the cli-

mate models and hydrological model parameterization and 

regionalization are the dominant sources of the uncertainty. 

The share of uncertainty varied over different seasons. We 

found that during spring and summer seasons the climate 

models are the second largest contributors to the overall 

uncertainty. For the winter and spring, the contribution of 

HM-P and HM-R decreased, while other sources shared 

more uncertainty in overall cascade. In general, our results 

showed a higher discrepancy between RCMs results (from 

NARCCAP) compared to GCMs results (from PCIC). This 

is likely because of the inconsistency in the biases due to 

representation of physical processes in RCM and GCMs, 

which were also addressed by other researchers (Erler and 

Peltier 2017; Fernández et al. 2018). Our results showed 

that there is a slightly higher agreement among climate 

model projections in near future scenarios compared to 

the far future, which is in line with the finding of other 

researchers (Krysanova and Hattermann 2017; Vetter et al. 

2017).

Considering the substantial impacts of natural variability 

on the uncertainty of climate-impact projections, which is 

an intrinsic property of the natural climate system, efforts 

should be made to better represent the characteristics of 

the natural and decal variability. To better understand this 

phenomena we refer readers to some important contribution 

to the literature such as Hawkins and Sutton (2011), Deser 

et al. (2012) and Erler et al. (2015). One of the key driv-

ers of uncertainty in southern Alberta is likely the Pacific 

Decadal Oscillation (PDO, Lapp et al. 2013). To account for 

the effects of PDO, integration of algorithms into existing 

models is necessary and it helps better characterization of 

natural/decadal variability. Improving the representation of 

the PDO would require a better representation of the relevant 

physics and dynamics in climate models.

Overall, a large share of HM-P and HM-R in the cascade 

of uncertainty in climate-impact projections, may raise an 

argument that using a highly parametrized physical model 

such as SWAT could be subjective in climate change impact 

studies. The application of such models could be limited 

if the initial SWAT model of a watershed was not set up 

consciously and uncertainty range of parameters was wide. 

This has been addressed in the literature (Abbaspour et al. 

2017; Faramarzi et al. 2015), which leads to the challenge 

of decision making under uncertainty condition. We rec-

ommend to use similar framework as the one developed in 

this study to investigate other similar spatial-data demanding 

and physical-based models such as VIC, Noah-MP, CLM, 

or HydroGeoSphere in climate-impact projections and to 

investigate the sensitivity of different hydrological models 

(HM-S) in the analysis of the uncertainty cascade. It might 

be possible that more physic-based models such as Noah-MP 

would probably show less parameter uncertainty in compari-

son with SWAT. However, a robust assessment using a simi-

lar approach as this study is required for robust conclusion.

Fig. 11  Variance decomposition of the uncertainty in green water 

flow for Alberta under seven sets of scenarios: framework-1 scenario-

set1 (a), framework-1 scenario-set2 (b), and framework-2 scenario-

set3 (c). The uncertainty sources are GCMS, RCPs, BCDS, HM-P 

and HM-R, RCMs, and ET calculation methods. The differences of 

future and historical simulations of green water flow (ensemble of 

nine sets of GCMs) were used for the uncertainty decomposition of 

GCMs framework (a, b). The absolute values of future simulations 

of green water flow (ensemble of ten sets of RCMs) were used for the 

uncertainty decomposition of RCMs framework (c)

◂ Table 6  The contribution of different sources of uncertainty to the 

overall cascade

For the framework-2, scenario-set3, numbers in the brackets are con-

tributions from seven RCMs using delta values

Scenario-set Blue water (%) Green water flow (%)

Framework-1, scenario-set1

 GCMs 28.58 24.42

 RCPs 11.25 17.83

 BCDS methods 20.58 20.32

 HM-P and HM-R 30.02 28.52

 Interaction 9.67 8.91

Framework-1, scenario-set2

 GCMs 29.83 26.34

 RCPs 13.41 13.67

 BCDS methods 22.5 20.53

 HM-P and HM-R 24.83 29.08

 Interaction 9.58 10.58

Framework-2, scenario-set3

 RCMs 51.1 (36.67) 40.0 (33.16)

 ET methods 7.1 (17.16) 22.3 (23.24)

 HM-P and HM-R 38.3 (42.33) 26.0 (30.9)

 Interaction 3.5 (3.84) 11.8 (12.7)
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Our approach is not unique to Alberta and should be 

applied in other jurisdictions around the world. Defining 

different sources of uncertainty will help decision makers 

and scientists to better deal with the issue of uncertainty 

and also help to identify the necessary research and/or data 

acquisition required to reduce uncertainty and improve deci-

sion confidence.
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